Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vestib Res ; 33(1): 31-49, 2023.
Article in English | MEDLINE | ID: mdl-36530112

ABSTRACT

BACKGROUND: Hypoxia influences standing balance and vestibular function. OBJECTIVE: The purpose here was to investigate the effect of hypoxia on the vestibular control of balance. METHODS: Twenty participants (10 males; 10 females) were tested over two days (normobaric hypoxia and normoxia). Participants stood on a force plate (head rotated leftward) and experienced random, continuous electrical vestibular stimulation (EVS) during trials of eyes open (EO) and closed (EC) at baseline (BL), after 5 (H1), 30 (H2) and 55-min (H3) of hypoxia, and 10-min into normoxic recovery (NR). Vestibular-evoked balance responses were quantified using cumulant density, coherence, and gain functions between EVS and anteroposterior forces. RESULTS: Oxyhemoglobin saturation, end-tidal oxygen and carbon dioxide decreased for H1-3 compared to BL; however, end-tidal carbon dioxide remained reduced at NR with EC (p≤0.003). EVS-AP force peak-to-peak amplitude was lower at H3 and NR than at BL (p≤0.01). At multiple frequencies, EVS-AP force coherence and gain estimates were lower at H3 and NR than BL for females; however, this was only observed for coherence for males. CONCLUSIONS: Overall, vestibular-evoked balance responses are blunted following normobaric hypoxia >30 min, which persists into NR and may contribute to the reported increases in postural sway.


Subject(s)
Muscle, Skeletal , Vestibule, Labyrinth , Male , Female , Humans , Muscle, Skeletal/physiology , Electromyography , Carbon Dioxide , Sensation , Vestibule, Labyrinth/physiology , Hypoxia , Postural Balance/physiology
2.
Appl Physiol Nutr Metab ; 46(10): 1257-1264, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33930277

ABSTRACT

Despite compelling muscular structure and function changes resulting from blood flow restricted (BFR) resistance training, mechanisms of action remain poorly characterized. Alterations in tissue O2 saturation (TSI%) and metabolites are potential drivers of observed changes, but their relationships with degree of occlusion pressure are unclear. We examined local TSI% and blood lactate (BL) concentration during BFR training to failure using different occlusion pressures on strength, hypertrophy, and muscular endurance over an 8-week training period. Twenty participants (11 males/9 females) trained 3/wk for 8 wk using high pressure (100% resting limb occlusion pressure, LOP; 20% one-repetition maximum (1RM)), moderate pressure (50% LOP, 20%1RM), or traditional resistance training (TRT; 70%1RM). Strength, size, and muscular endurance were measured pre/post training. TSI% and BL were quantified during a training session. Despite overall increases, no group preferentially increased strength, hypertrophy, or muscular endurance (p > 0.05). Neither TSI% nor BL concentration differed between groups (p > 0.05). Moderate pressure resulted in greater accumulated deoxygenation stress (TSI% × time) (-6352 ± 3081, -3939 ± 1835, -2532 ± 1349 au for moderate pressure, high pressure, and TRT, p = 0.018). We demonstrate that BFR training to task-failure elicits similar strength, hypertrophy, and muscular endurance changes to TRT. Further, varied occlusion pressure does not impact these outcomes or elicit changes in TSI% or BL concentrations. Novelty: Training to task failure with low-load blood flow restriction elicits similar improvements to traditional resistance training, regardless of occlusion pressure. During blood flow restriction, altering occlusion pressure does not proportionally impact tissue O2 saturation nor blood lactate concentrations.


Subject(s)
Hypoxia , Lactic Acid/blood , Muscle, Skeletal/growth & development , Regional Blood Flow , Resistance Training , Adaptation, Physiological , Adult , Constriction , Female , Humans , Male , Muscle Strength , Muscle, Skeletal/blood supply , Young Adult
3.
J Synchrotron Radiat ; 3(Pt 1): 14-9, 1996 Jan 01.
Article in English | MEDLINE | ID: mdl-16702653

ABSTRACT

We have recently demonstrated that X-rays can be used for changing the redox states of the metal centre in metalloproteins [Murphy et al. (1995). J. Synchrotron Rad. 2, 64-69]. The possibility of using the Laue method for studying the structural changes associated with such X-ray-induced reactions is explored by applying the method to the structure determination of a new azurin (hereafter referred to as azurin II) from the denitrifying bacterium Alcaligenes xylosoxidans. Laue X-ray diffraction data of azurin II were collected at station 9.7 of the SRS Daresbury. Three diffraction patterns were recorded on film packs at three different crystal orientations. The data were processed using the Daresbury Laue Software Suite to give 2224 independent single reflections (R(merge) = 0.136) in the wavelength range 0.36-1.40 A. The data completeness was 44% at 2.55 A resolution. Phase determination for the data was undertaken using the molecular-replacement method; the top peak was chosen in both the rotation function and the subsequent translation function. This solution agreed well with the molecular-replacement solution achieved independently using monochromatic data. The electron-density map showed reasonably good agreement with the model and the copper site was readily recognizable as it had the highest density. To see if the electron-density map could be improved, ;the doublets in the diffraction data were then deconvoluted. This added 26% data in the region infinity-2d(min) resulting in an improvement in the data completeness to 50% and thus in improved continuity of the electron-density map. The quality of these maps is discussed from the point of view of the suitability of this approach for studying redox-induced structural changes.

4.
Biochemistry ; 34(32): 10180-6, 1995 Aug 15.
Article in English | MEDLINE | ID: mdl-7640272

ABSTRACT

We have isolated two type 1 copper-containing proteins (M(r) approximately 13K) from Alcaligenes xylosoxidans (NCIMB 11015) grown under denitrifying conditions. Amino acid sequence analysis of these two proteins shows one to be the previously identified azurin (Ambler, 1971), which we shall call azurin I, and the other to be a related, but previously undescribed, blue copper protein which we show to also be an azurin and propose to call azurin II. Thus, NCIMB 11015 becomes the second system where two distinct azurins are found, the other being Methylomonas J (Ambler & Tobari, 1989). On isoelectric focusing, azurin I migrates very similarly to the previously identified azurin from this organism while azurin II migrates similarly to azurin purified from Alcaligenes denitrificans NCTC 8582. The sequence of azurin II is 33% different than the azurin I sequence but is only 11% different than the azurin from Alcaligenes denitrificans NCTC 8582. Optical spectra for the two proteins are very similar with epsilon mM values of 6.27 and 5.73 mM-1 cm-1 for azurin I and II, respectively, at lambda max approximately 620 nm. The 291 nm shoulder normally ascribed to the hydrophobic nature of tryptophan 48 is clearly observed in azurin I but is missing in azurin II. Amino acid analysis confirms that this tryptophan is missing in azurin II. Azurin I and azurin II show essentially the same redox potential of 305 +/- 10 mV at pH 7.5 and are equally effective electron donors to the purified dissimilatory nitrite reductase of Alc. xylosoxidans in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Alcaligenes/chemistry , Azurin/chemistry , Nitrite Reductases/chemistry , Alcaligenes/enzymology , Amino Acid Sequence , Azurin/isolation & purification , Crystallography, X-Ray , Electrons , Molecular Sequence Data , Sequence Homology, Amino Acid
5.
Appl Opt ; 23(14): 2238, 1984 Jul 15.
Article in English | MEDLINE | ID: mdl-18212982
SELECTION OF CITATIONS
SEARCH DETAIL
...