Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Food Sci ; 88(7): 2960-2967, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37249091

ABSTRACT

Penicillium digitatum and Penicillium italicum are the main causal agents of postharvest diseases in lemon. Over the last decades, the appearance of isolates resistant to the main commercial fungicides has been considered one of the most serious problems for the citrus industry. In this work, potassium sorbate (KS) was evaluated as an alternative to chemical fungicides to control postharvest diseases caused by Penicillium isolates resistant to imazalil, thiabendazol, and pyrimethanil. In vitro assays showed that 1% KS inhibited conidia germination and mycelial growth of sensitive and resistant P. digitatum and P. italicum isolates, being this effect stronger at pH 5 than at pH 9. In curative treatments, the immersion of inoculated lemons in 1% KS aqueous solution for 30 s reduced green and blue molds incidences by around 80%. No wound protection effect was observed when wounded lemons were immersed in 3% salt solution before inoculation. Noteworthy, the inclusion of KS in a commercial wax coating effectively controlled green and blue molds, even in decays caused by fungicide resistance isolates. Together, results encourage the use of KS in lemon postharvest treatments to contribute to the management of resistant strains, which represent a major challenge in packinghouses worldwide. PRACTICAL APPLICATION: The use of KS in citrus postharvest treatments would help producers to reduce spoilage caused by Penicillium fungicide-resistant strains. The inclusion of this generally recognized as safe compound in wax coatings improves its persistence on the fruit surface, keeping product quality during long-term overseas transport. In sum, KS constitutes an affordable and eco-friendly option for controlling postharvest molds in lemon fruit.


Subject(s)
Citrus , Fungicides, Industrial , Penicillium , Fungicides, Industrial/pharmacology , Sorbic Acid/pharmacology , Food Preservation/methods , Citrus/chemistry , Fungi , Fruit/chemistry
2.
Am J Bot ; 98(12): 2077-83, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22130272

ABSTRACT

PREMISE OF THE STUDY: Duchesnea indica is a wild strawberry-like species that has red fruits. In a recent survey in the highlands of Tucumán (Argentina), a plant of D. indica with white fruits was discovered. The aim of this study was to investigate whether the white-fruited character was due to a phenotypic or genotypic change. The stability and heritability of the character and the expression of genes involved in anthocyanins synthesis were studied and compared with red-fruited genotypes. This study contributes to understanding the molecular basis of some factors involved in fruit pigmentation, a horticulturally and taxonomically important trait. METHODS: Stability and heritability of the white-fruited character were evaluated in plants obtained by asexual propagation or by sexual crosses between the white- and red-fruited genotypes. Asexual multiplications were carried out by stolon rooting and sexual multiplications by germination of achenes obtained from crosses. The expression level of the genes involved in the synthesis and regulation of the anthocyanins pathway (CHS, F3H, DFR, ANS, and MYB10) were evaluated by RT-PCR using specific primers. KEY RESULTS: Plants with the white-fruited character always yielded white-fruited progeny when propagated asexually, whereas in sexually propagated plants fruit color depended on the mother. Red-fruited mothers yielded red-fruited progeny, and white-fruited mothers yielded fruits ranging from dark pink to white. Molecular analysis suggested that the white-fruited character was due to the low expression of the ANS gene. CONCLUSIONS: Results obtained indicate that the white-fruited character was stable. Mother progenitors exert a strong influence on the expression of the white-fruited character. The white-fruited phenotype is due to the impairment or downregulation of the ANS gene.


Subject(s)
Anthocyanins/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Pigmentation/genetics , Plant Proteins/genetics , Rosaceae/genetics , Anthocyanins/biosynthesis , Crosses, Genetic , Flowers/anatomy & histology , Fruit/anatomy & histology , Genotype , Plant Leaves/anatomy & histology , Plant Proteins/metabolism , Rosaceae/anatomy & histology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL