Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499391

ABSTRACT

The SH-SY5Y neuroblastoma cells are a widely used in vitro model approximating neurons for testing the target engagement of therapeutics designed for neurodegenerative diseases and pain disorders. However, their potential as a model for receptor-mediated delivery and uptake of novel modalities, such as antibody-drug conjugates, remains understudied. Investigation of the SH-SY5Y cell surfaceome will aid in greater in vitro to in vivo correlation of delivery and uptake, thereby accelerating drug discovery. So far, the majority of studies have focused on total cell proteomics from undifferentiated and differentiated SH-SY5Y cells. While some studies have investigated the expression of specific proteins in neuroblastoma tissue, a global approach for comparison of neuroblastoma cell surfaceome to the brain and dorsal root ganglion (DRG) neurons remains uninvestigated. Furthermore, an isoform-specific evaluation of cell surface proteins expressed on neuroblastoma cells remains unexplored. In this study, we define a bioinformatic workflow for the identification of high-confidence surface proteins expressed on brain and DRG neurons using tissue proteomic and transcriptomic data. We then delineate the SH-SY5Y cell surfaceome by surface proteomics and show that it significantly overlaps with the human brain and DRG neuronal surface proteome. We find that, for 32% of common surface proteins, SH-SY5Y-specific major isoforms are alternatively spliced, maintaining their protein-coding ability, and are predicted to localize to the cell surface. Validation of these isoforms using surface proteomics confirms a SH-SY5Y-specific alternative NRCAM (neuron-glia related cell adhesion molecule) isoform, which is absent in typical brain neurons, but present in neuroblastomas, making it a receptor of interest for neuroblastoma-specific therapeutics.


Subject(s)
Neuroblastoma , Humans , Neuroblastoma/therapy , Neuroblastoma/drug therapy , Cell Line, Tumor , Proteomics , Neurons/metabolism , Cell Differentiation/physiology , Membrane Proteins/metabolism
3.
NPJ Breast Cancer ; 8(1): 126, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36446794

ABSTRACT

Despite the biological and therapeutic relevance of CDK4/6 for the treatment of HR+, HER2- advanced breast cancer, the detailed mode of action of CDK4/6 inhibitors is not completely understood. Of particular interest, phosphorylation of CDK4 at T172 (pT172) is critical for generating the active conformation, yet no such crystal structure has been reported to date. We describe here the x-ray structure of active CDK4-cyclin D3 bound to the CDK4/6 inhibitor abemaciclib and discuss the key aspects of the catalytically-competent complex. Furthermore, the effect of CDK4/6 inhibitors on CDK4 T172 phosphorylation has not been explored, despite its role as a potential biomarker of CDK4/6 inhibitor response. We show mechanistically that CDK4/6i stabilize primed (pT172) CDK4-cyclin D complex and selectively displace p21 in responsive tumor cells. Stabilization of active CDK4-cyclin D1 complex can lead to pathway reactivation following alternate dosing regimen. Consequently, sustained binding of abemaciclib to CDK4 leads to potent cell cycle inhibition in breast cancer cell lines and prevents rebound activation of downstream signaling. Overall, our study provides key insights demonstrating that prolonged treatment with CDK4/6 inhibitors and composition of the CDK4/6-cyclin D complex are both critical determinants of abemaciclib efficacy, with implications for this class of anticancer therapy.

4.
ACS Chem Biol ; 17(2): 348-360, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35034446

ABSTRACT

A major obstacle in the development of effective oligonucleotide therapeutics is a lack of understanding about their cytosolic and nuclear penetration. To address this problem, we have applied the chloroalkane penetration assay (CAPA) to oligonucleotide therapeutics. CAPA was used to quantitate cytosolic delivery of antisense oligonucleotides (ASOs) and siRNAs and to explore the effects of a wide variety of commonly used chemical modifications and their patterning. We evaluated potential artifacts by exploring the effects of serum, comparing activity data and CAPA data, and assessing the impact of the chloroalkane tag and its linker chemistry. We also used viral transduction to expand CAPA to the nuclear compartment in epithelial and neuronal cell lines. Using this enhanced method, we measured a 48-h time course of nuclear penetration for a panel of chemically diverse modified RNAs. Moving forward, CAPA will be a useful tool for deconvoluting the complex processes of endosomal uptake, escape into the cytosol, and subcellular trafficking of oligonucleotide therapeutics in therapeutically relevant cell types.


Subject(s)
Oligonucleotides, Antisense , Oligonucleotides , Cell Nucleus , Cytosol/metabolism , Oligonucleotides/metabolism , Oligonucleotides, Antisense/metabolism , RNA, Small Interfering/metabolism
5.
ACS Chem Biol ; 16(10): 1961-1967, 2021 10 15.
Article in English | MEDLINE | ID: mdl-33835779

ABSTRACT

Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.


Subject(s)
Galactosamine/analogs & derivatives , Galactosamine/metabolism , Galactosyltransferases/metabolism , Glucosamine/analogs & derivatives , Glucosamine/metabolism , Alkynes/chemistry , Amino Acid Sequence , Animals , Azides/chemistry , Cell Line, Tumor , Click Chemistry , Fluorescent Dyes/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycosylation , Humans , Metabolic Engineering/methods , Mice , Molecular Probes/chemistry , Oligosaccharides/biosynthesis , Polysaccharides/biosynthesis , Uridine Diphosphate Sugars/biosynthesis , Uridine Diphosphate Sugars/metabolism
6.
Proc Natl Acad Sci U S A ; 117(41): 25293-25301, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989128

ABSTRACT

Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.


Subject(s)
Acetylgalactosamine/metabolism , Glycoproteins/metabolism , Acetylgalactosamine/chemistry , Gene Expression Regulation, Enzymologic , Glycosylation , Humans , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Substrate Specificity , Uridine Diphosphate N-Acetylgalactosamine/chemistry
7.
J Am Chem Soc ; 142(30): 13021-13029, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32605368

ABSTRACT

Golgi mannosidase II (GMII) catalyzes the sequential hydrolysis of two mannosyl residues from GlcNAcMan5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor for all complex N-glycans, including the branched N-glycans associated with cancer. Inhibitors of GMII are potential cancer therapeutics, but their usefulness is limited by off-target effects, which produce α-mannosidosis-like symptoms. Despite many structural and mechanistic studies of GMII, we still lack a potent and selective inhibitor of this enzyme. Here, we synthesized manno-epi-cyclophellitol epoxide and aziridines and demonstrate their covalent modification and time-dependent inhibition of GMII. Application of fluorescent manno-epi-cyclophellitol aziridine derivatives enabled activity-based protein profiling of α-mannosidases from both human cell lysate and mouse tissue extracts. Synthesized probes also facilitated a fluorescence polarization-based screen for dGMII inhibitors. We identified seven previously unknown inhibitors of GMII from a library of over 350 iminosugars and investigated their binding modalities through X-ray crystallography. Our results reveal previously unobserved inhibitor binding modes and promising scaffolds for the generation of selective GMII inhibitors.


Subject(s)
Cyclohexanols/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Mannosidases/antagonists & inhibitors , Cyclohexanols/chemical synthesis , Cyclohexanols/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mannosidases/metabolism , Molecular Structure
8.
J Am Chem Soc ; 141(34): 13442-13453, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31373799

ABSTRACT

O-Linked α-N-acetylgalactosamine (O-GalNAc) glycans constitute a major part of the human glycome. They are difficult to study because of the complex interplay of 20 distinct glycosyltransferase isoenzymes that initiate this form of glycosylation, the polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). Despite proven disease relevance, correlating the activity of individual GalNAc-Ts with biological function remains challenging due to a lack of tools to probe their substrate specificity in a complex biological environment. Here, we develop a "bump-hole" chemical reporter system for studying GalNAc-T activity in vitro. Individual GalNAc-Ts were rationally engineered to contain an enlarged active site (hole) and probed with a newly synthesized collection of 20 (bumped) uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) analogs to identify enzyme-substrate pairs that retain peptide specificities but are otherwise completely orthogonal to native enzyme-substrate pairs. The approach was applicable to multiple GalNAc-T isoenzymes, including GalNAc-T1 and -T2 that prefer nonglycosylated peptide substrates and GalNAcT-10 that prefers a preglycosylated peptide substrate. A detailed investigation of enzyme kinetics and specificities revealed the robustness of the approach to faithfully report on GalNAc-T activity and paves the way for studying substrate specificities in living systems.


Subject(s)
Acetylgalactosamine/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Protein Engineering , Uridine Diphosphate/metabolism , Acetylgalactosamine/chemistry , Amino Acid Sequence , Catalytic Domain , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Models, Molecular , Mutagenesis , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/genetics , Substrate Specificity , Uridine Diphosphate/chemistry , Polypeptide N-acetylgalactosaminyltransferase
9.
Chemistry ; 24(39): 9983-9992, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29797675

ABSTRACT

N-Glycans direct protein function, stability, folding and targeting, and influence immunogenicity. While most glycosidases that process N-glycans cleave a single sugar residue at a time, enzymes from glycoside hydrolase family 99 are endo-acting enzymes that cleave within complex N-glycans. Eukaryotic Golgi endo-1,2-α-mannosidase cleaves glucose-substituted mannose within immature glucosylated high-mannose N-glycans in the secretory pathway. Certain bacteria within the human gut microbiota produce endo-1,2-α-mannanase, which cleaves related structures within fungal mannan, as part of nutrient acquisition. An unconventional mechanism of catalysis was proposed for enzymes of this family, hinted at by crystal structures of imino/azasugars complexed within the active site. Based on this mechanism, we developed the synthesis of two glycosides bearing a spiro-epoxide at C-2 as electrophilic trap, to covalently bind a mechanistically important, conserved GH99 catalytic residue. The spiro-epoxyglycosides are equipped with a fluorescent tag, and following incubation with recombinant enzyme, allow concentration, time and pH dependent visualization of the bound enzyme using gel electrophoresis.


Subject(s)
Glycoside Hydrolases/metabolism , Glycosides/chemistry , Mannose/chemistry , Mannosidases/chemistry , Polysaccharides/chemistry , Catalysis , Catalytic Domain , Glycoside Hydrolases/chemistry , Humans , Polysaccharides/metabolism
10.
Biomacromolecules ; 15(7): 2751-9, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24945908

ABSTRACT

A series of stimulus-responsive elastin-like polypeptide-poly(ethylene glycol) (ELP-PEG) block copolymers was synthesized. The polymeric building blocks were conjugated via the efficient and specific strain-promoted alkyne-azide cycloaddition (SPAAC). For this purpose, ELP and PEG blocks were functionalized with azide and cyclooctyne moieties, respectively. Azides were introduced by applying a recently developed pH-controlled diazotransfer reaction on the primary amines present in ELP (N-terminus and lysine side chains). By varying pH, ELP-blocks with one or two azides were obtained, which subsequently allowed us to synthesize both ELP-PEG diblock copolymers and miktoarm star polymers. Triggering the phase transition of the ELP-block resulted in the formation of an amphiphilic block copolymer, which self-assembled into micelles. This is the first example of an ELP-containing hybrid block copolymer in which PEG as the hydrophilic corona-forming domain is combined with a stimulus-responsive ELP-block. The encapsulation of a hydrophobic fluorescent dye was shown to exemplify the potential of the micelles to serve as nanocarriers for hydrophobic drugs, with the PEG corona providing stealth and steric protection of encapsulated materials.


Subject(s)
Elastin/chemistry , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Elastin/biosynthesis , Escherichia coli , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Micelles , Peptides/chemistry , Phase Transition , Polymerization
11.
Org Biomol Chem ; 12(27): 5031-7, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24899166

ABSTRACT

In search for increased reactivity in strain-promoted azide alkyne cycloadditions (SPAAC), the synthesis of new and more reactive cyclooctynes is of pivotal importance. To identify cyclooctynes with enhanced reactivity, without loss of stability, the synthesis and kinetic analysis of new dibenzoazacyclooctyne (DIBAC) analogues were conducted. Starting from iodobenzyl alcohol analogues and ortho-ethynylaniline various substituted dihydrodibenzo[b,f]azocines were produced. Subsequent bromination and elimination proved to be difficult depending on the aromatic substitution pattern, yielding chloro-, bromo-, and methoxy-substituted DIBACs in moderate yield. In the elimination reaction towards nitro- and Br,Cl-DIBAC, the corresponding cyclooctene was obtained instead of the cyclooctyne. Additionally, a dimethoxy-substituted DIBAC analogue was prepared following an alternative route involving light-induced deprotection of a cyclopropenone derivative. In total, four DIBAC analogues were successfully prepared showing excellent rate constants in the SPAAC reaction ranging from 0.45 to 0.9 M(-1) s(-1), which makes them comparable to the fastest cyclooctynes currently known.


Subject(s)
Alkynes/chemistry , Aza Compounds/chemical synthesis , Azides/chemistry , Cycloaddition Reaction , Cyclopropanes/chemistry
12.
Org Biomol Chem ; 11(38): 6439-55, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23969529

ABSTRACT

This review provides a literature overview of bioorthogonal ligation methods for protein modification, which have largely evolved over the last 15 years. Since 1990, various new reactions have been developed that do not involve naturally occurring functional handles. Especially the development of such so-called bioorthogonal ligations has significantly contributed to our ability to selectively modify biomolecules not only in the test tube, but also in living systems.


Subject(s)
Organic Chemicals/chemistry , Proteins/chemistry , Staining and Labeling/methods , Animals , Humans , Organic Chemicals/analysis , Proteins/analysis
13.
Macromol Biosci ; 13(7): 938-45, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23695978

ABSTRACT

Targeted carrier systems (e.g., liposomes or nanoparticles) are used to specifically deliver drugs to a site of interest. Site-direction can be achieved by attachment of targeting molecules, such as peptides, DNA/RNA, or antibodies, to the surface of the carrier. Here, the formation of polymersomes with tumor-targeting potential is described. A single-domain antibody (A12) that specifically targets PlexinD1 (a transmembrane protein overexpressed in tumor vasculature) is equipped with an azide-functionality using expressed protein ligation. This azide-containing A12 can subsequently be attached to BCN-functionalized polymersomes using a strain-promoted azide alkyne cycloaddition, thereby forming polymersomes with tumor-targeting potential.


Subject(s)
Drug Delivery Systems , Liposomes/chemistry , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Single-Domain Antibodies/administration & dosage , Animals , Azides/chemistry , Cell Adhesion Molecules, Neuronal/chemistry , Cell Adhesion Molecules, Neuronal/immunology , Gold/administration & dosage , Gold/chemistry , Humans , Intracellular Signaling Peptides and Proteins , Liposomes/administration & dosage , Membrane Glycoproteins , Metal Nanoparticles/administration & dosage , Mice , Molecular Targeted Therapy , Neoplasms/immunology , Single-Domain Antibodies/chemistry
14.
Bioconjug Chem ; 24(6): 987-96, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23713411

ABSTRACT

Inspired by the multienzyme complexes occurring in nature, enzymes have been brought together in vitro as well. We report a co-localization strategy milder than nonspecific cross-linking, and free of any scaffold and affinity tags. Using non-natural amino acid incorporation, two heterobifunctional linkers, and the strain-promoted azide-alkyne cycloaddition as conjugation reaction, three metabolic enzymes are linked together in a controlled manner. Conjugate formation was demonstrated by size-exclusion chromatography and gel electrophoresis. The multienzyme complexes were further characterized by native mass spectrometry. It was shown that the complexes catalyzed the three-step biosynthesis of piceid in vitro with comparable kinetic behavior to the uncoupled enzymes. The approach is envisioned to have high potential for various biotechnological applications, in which multiple biocatalysts collaborate at low concentrations, in which diffusion may be limited and/or side-reactions are prone to occur.


Subject(s)
Alkynes/metabolism , Azides/metabolism , Coenzyme A/metabolism , Stilbenes/metabolism , Alkynes/chemistry , Azides/chemistry , Biocatalysis , Coenzyme A/chemistry , Coenzyme A/isolation & purification , Cyclization , Glycosylation , Models, Molecular , Molecular Structure , Resveratrol , Stilbenes/chemistry
15.
Amino Acids ; 43(3): 1251-63, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22180026

ABSTRACT

Transglutaminase 2 (TG2) is a Ca(2+)-dependent enzyme able to catalyze the formation of ε(γ-glutamyl)-lysine crosslinks between polypeptides, resulting in high molecular mass multimers. We have developed a bioorthogonal chemical method for the labeling of TG2 glutamine-donor proteins. As amine-donor substrates we used a set of azide- and alkyne-containing primary alkylamines that allow, after being crosslinked to glutamine-donor proteins, specific labeling of these proteins via the azide-alkyne cycloaddition. We demonstrate that these azide- and alkyne-functionalized TG2 substrates are cell permeable and suitable for specific labeling of TG2 glutamine-donor substrates in HeLa and Movas cells. Both the Cu(I)-catalyzed and strain promoted azide-alkyne cycloaddition proved applicable for subsequent derivatization of the TG2 substrate proteins with the desired probe. This new method for labeling TG2 substrate proteins introduces flexibility in the detection and/or purification of crosslinked proteins, allowing differential labeling of cellular proteins.


Subject(s)
Click Chemistry , GTP-Binding Proteins/chemistry , Transglutaminases/chemistry , Acylation , Alkynes/chemistry , Amines/chemistry , Amino Acid Sequence , Animals , Azides/chemistry , Biocatalysis , Biotin/analogs & derivatives , Biotin/chemistry , Cadaverine/metabolism , Cell Membrane/metabolism , Cross-Linking Reagents/chemistry , Cycloaddition Reaction , Enzyme Inhibitors/chemistry , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/metabolism , GTP-Binding Proteins/antagonists & inhibitors , HSP20 Heat-Shock Proteins/chemistry , HeLa Cells , Humans , Mice , Peptide Fragments/chemistry , Permeability , Protein Glutamine gamma Glutamyltransferase 2 , Staining and Labeling , Transglutaminases/antagonists & inhibitors
16.
Acc Chem Res ; 44(9): 805-15, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21766804

ABSTRACT

The structural complexity of molecules isolated from biological sources has always served as an inspiration for organic chemists. Since the first synthesis of a natural product, urea, chemists have been challenged to prepare exact copies of natural structures in the laboratory. As a result, a broad repertoire of synthetic transformations has been developed over the years. It is now feasible to synthesize organic molecules of enormous complexity, and also molecules with less structural complexity but prodigious societal impact, such as nylon, TNT, polystyrene, statins, estradiol, XTC, and many more. Unfortunately, only a few chemical transformations are so mild and precise that they can be used to selectively modify biochemical structures, such as proteins or nucleic acids; these are the so-called bioconjugation strategies. Even more challenging is to apply a chemical reaction on or in living cells or whole organisms; these are the so-called bioorthogonal reactions. These fields of research are of particular importance because they not only pose a worthy challenge for chemists but also offer unprecedented possibilities for studying biological systems, especially in areas in which traditional biochemistry and molecular biology tools fall short. Recent years have seen tremendous growth in the chemical biology toolbox. In particular, a rapidly increasing number of bioorthogonal reactions has been developed based on chemistry involving strained alkenes or strained alkynes. Such strained unsaturated systems have the unique ability to undergo (3 + 2) and (4 + 2) cycloadditions with a diverse set of complementary reaction partners. Accordingly, chemistry centered around strain-promoted cycloadditions has been exploited to precisely modify biopolymers, ranging from nucleic acids to proteins to glycans. In this Account, we describe progress in bioconjugation centered around cycloadditions of these strained unsaturated systems. Being among the first to recognize the utility of strain-promoted cycloadditions between alkenes and dipoles, we highlight our report in 2007 of the reaction of oxanobornadienes with azides, which occurs through a sequential cycloaddition and retro Diels-Alder reaction. We further consider the subsequent refinement of this reaction as a valuable tool in chemical biology. We also examine the development of the reaction of cyclooctyne, the smallest isolable cyclic alkyne, with a range of substrates. Owing to severe deformation of the triple bond from ideal linear geometry, the cyclooctynes show high reactivity toward dienes, 1,3-dipoles, and other molecular systems. In the search for bioorthogonal reactions, cycloadditions of cyclic alkenes and alkynes have now established themselves as powerful tools in reagent-free bioconjugations.


Subject(s)
Alkenes/chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Copper , Cyclization , Nucleic Acids/chemistry , Proteins/chemistry
17.
Chembiochem ; 11(9): 1168-84, 2010 Jun 14.
Article in English | MEDLINE | ID: mdl-20455238

ABSTRACT

Covalently bound azide on a (small) organic molecule or a (large) biomolecular structure has proven an important handle for bioconjugation. Azides are readily introduced, small, and stable, yet undergo smooth ligation with a range of reactive probes under mild conditions. In particular, the potential of azides to undergo metal-free reactions with strained unsaturated systems has inspired the development of an increasing number of reactive probes, which are comprehensively summarized here. For each individual probe, the synthetic preparation is described, together with reaction kinetics and the full range of applications, from materials science to glycoprofiling. Finally, a qualitative and quantitative comparison of azido-reactive probes is provided.


Subject(s)
Azides/chemistry , Benzene Derivatives/chemistry , Catalysis , Cyclization , Metals/chemistry
19.
Chem Commun (Camb) ; 46(1): 97-9, 2010 Jan 07.
Article in English | MEDLINE | ID: mdl-20024305

ABSTRACT

A strained aza-dibenzocyclooctyne was prepared via a high-yielding synthetic route. Copper-free, strain-promoted click reaction with azides showed excellent kinetics, and a functionalised aza-cyclooctyne was applied in fast and efficient PEGylation of enzymes.


Subject(s)
Aza Compounds/chemistry , Cycloparaffins/chemistry , Polyethylene Glycols/chemistry , S100 Calcium Binding Protein G/chemistry , Calbindins , Copper/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...