Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Physiol ; 602(4): 569-596, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38319954

ABSTRACT

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia that is strongly associated with cardiovascular (CV) disease and sedentary lifestyles. Despite the benefits of exercise on overall health, AF incidence in high-level endurance athletes rivals that of CV disease patients, suggesting a J-shaped relationship with AF. To investigate the dependence of AF vulnerability on exercise, we varied daily swim durations (120, 180 or 240 min day-1 ) in 7-week-old male CD1 mice. We assessed mice after performing equivalent amounts of cumulative work during swimming (i.e. ∼700 L O2  kg-1 ), as determined from O2 consumption rates ( V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ ). The mean V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ during exercise increased progressively throughout the training period and was indistinguishable between the swim groups. Consistent with similar improvements in aerobic conditioning induced by swimming, skeletal muscle mitochondria content increased (P = 0.027) indistinguishably between exercise groups. Physiological ventricular remodelling, characterized by mild hypertrophy and left ventricular dilatation, was also similar between exercised mice without evidence of ventricular arrhythmia inducibility. By contrast, prolongation of daily swim durations caused progressive and vagal-dependent heart rate reductions (P = 0.008), as well as increased (P = 0.005) AF vulnerability. As expected, vagal inhibition prolonged (P = 0.013) atrial refractoriness, leading to reduced AF vulnerability, although still inducible in the 180 and 240 min swim groups. Accordingly, daily swim dose progressively increased atrial hypertrophy (P = 0.003), fibrosis (P < 0.001) and macrophage accumulation (P = 0.006) without differentially affecting the ventricular tissue properties. Thus, increasing daily exercise duration drives progressively adverse atrial-specific remodelling and vagal-dependent AF vulnerability despite robust and beneficial aerobic conditioning and physiological remodelling of ventricles and skeletal muscle. KEY POINTS: Previous studies have suggested that a J-shaped dose-response relationship exists between physical activity and cardiovascular health outcomes, with moderate exercise providing protection against many cardiovascular disease conditions, whereas chronic endurance exercise can promote atrial fibrillation (AF). We found that AF vulnerability increased alongside elevated atrial hypertrophy, fibrosis and inflammation as daily swim exercise durations in mice were prolonged (i.e. ≥180 min day-1 for 6 weeks). The MET-h week-1 (based on O2  measurements during swimming) needed to induce increased AF vulnerability mirrored the levels linked to AF in athletes. These adverse atria effects associated with excessive daily exercise occurred despite improved aerobic conditioning, skeletal muscle adaptation and physiological ventricular remodelling. We suggest that atrial-specific changes observed with exercise arise from excessive elevations in venous filling pressures during prolonged exercise bouts, which we argue has implications for all AF patients because elevated atrial pressures occur in most cardiovascular disease conditions as well as ageing which are linked to AF.


Subject(s)
Atrial Fibrillation , Humans , Male , Animals , Mice , Ventricular Remodeling , Heart Atria , Fibrosis , Cardiomegaly
2.
Cardiovasc Res ; 119(16): 2607-2622, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37713664

ABSTRACT

AIMS: Endurance exercise is associated with an increased risk of atrial fibrillation (AF). We previously established that adverse atrial remodelling and AF susceptibility induced by intense exercise in mice require the mechanosensitive and pro-inflammatory cytokine tumour necrosis factor (TNF). The cellular and mechanistic basis for these TNF-mediated effects is unknown. METHODS AND RESULTS: We studied the impact of Tnf excision, in either atrial cardiomyocytes or endothelial cells (using Cre-recombinase expression controlled by Nppa or Tie2 promoters, respectively), on the cardiac responses to six weeks of intense swim exercise training. TNF ablation, in either cell type, had no impact on the changes in heart rate, autonomic tone, or left ventricular structure and function induced by exercise training. Tnf excision in atrial cardiomyocytes did, however, prevent atrial hypertrophy, fibrosis, and macrophage infiltration as well as conduction slowing and increased AF susceptibility arising from exercise training. In contrast, endothelial-specific excision only reduced the training-induced atrial hypertrophy. Consistent with these cell-specific effects of Tnf excision, inducing TNF loss from atrial cardiomyocytes prevented activation of p38MAPKinase, a strain-dependent downstream mediator of TNF signalling, without affecting the atrial stretch as assessed by atrial pressures induced by exercise. Despite TNF's established role in innate immune responses and inflammation, neither acute nor chronic exercise training caused measurable NLRP3 inflammasome activation. CONCLUSIONS: Our findings demonstrate that adverse atrial remodelling and AF vulnerability induced by intense exercise require TNF in atrial cardiomyocytes whereas the impact of endothelial-derived TNF is limited to hypertrophy modulation. The implications of the cell autonomous effects of TNF and crosstalk between cells in the atria are discussed.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Cardiomyopathies , Animals , Mice , Atrial Fibrillation/etiology , Atrial Fibrillation/prevention & control , Atrial Fibrillation/pathology , Myocytes, Cardiac/metabolism , Endothelial Cells/metabolism , Heart Atria , Tumor Necrosis Factor-alpha/metabolism , Cardiomyopathies/metabolism , Hypertrophy/complications , Hypertrophy/metabolism
3.
Front Physiol ; 12: 692247, 2021.
Article in English | MEDLINE | ID: mdl-34733171

ABSTRACT

Heart rate (HR) and blood pressure as well as adverse cardiovascular events show clear circadian patterns, which are linked to interdependent daily variations in physical activity and cardiac autonomic nerve system (ANS) activity. We set out to assess the relative contributions of the ANS (alone) and physical activity to circadian HR fluctuations. To do so, we measured HR (beats per minute, bpm) in mice that were either immobilized using isoflurane anesthesia or free-moving. Nonlinear fits of HR data to sine functions revealed that anesthetized mice display brisk circadian HR fluctuations with amplitudes of 47.1±7.4bpm with the highest HRs in middle of the dark (active) period (ZT 18: 589±46bpm) and lowest HRs in the middle of the light (rest) period (ZT 6: 497±54bpm). The circadian HR fluctuations were reduced by ~70% following blockade of cardiac parasympathetic nervous activity (PNA) with atropine while declining by <15% following cardiac sympathetic nerve activity (SNA) blockade with propranolol. Small HR fluctuation amplitudes (11.6±5.9bpm) remained after complete cardiac ANS blockade. Remarkably, circadian HR fluctuation amplitudes in freely moving, telemetrized mice were only ~32% larger than in anesthetized mice. However, after gaining access to running wheels for 1week, circadian HR fluctuations increase to 102.9±12.1bpm and this is linked directly to increased O2 consumption during running. We conclude that, independent of physical activity, the ANS is a major determinant of circadian HR variations with PNA playing a dominant role compared to SNA. The effects of physical activity to the daily HR variations are remarkably small unless mice get access to running wheels.

6.
Am J Physiol Heart Circ Physiol ; 320(4): H1261-H1275, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33416456

ABSTRACT

Acute exhaustive endurance exercise can differentially impact the right ventricle (RV) versus the left ventricle (LV). However, the hemodynamic basis for these differences and its impact on postexercise recovery remain unclear. Therefore, we assessed cardiac structure and function along with hemodynamic properties of mice subjected to single bouts (216 ± 8 min) of exhaustive swimming (ES). One-hour after ES, LVs displayed mild diastolic impairment compared with that in sedentary (SED) mice. Following dobutamine administration to assess functional reserve, diastolic and systolic function were slightly impaired. Twenty-four hours after ES, LV function was largely indistinguishable from that in SED. By contrast, 1-h post swim, RVs showed pronounced impairment of diastolic and systolic function with and without dobutamine, which persisted 24 h later. The degree of RV impairment correlated with the time-to-exhaustion. To identify hemodynamic factors mediating chamber-specific responses to ES, LV pressure was recorded during swimming. Swimming initiated immediate increases in heart rates (HRs), systolic pressure, dP/dtmax and -dP/dtmin, which remained stable for ∼45 min. LV end-diastolic pressures (LVEDP) increased to ≥45 mmHg during the first 10 min and subsequently declined. After 45 min, HR and -dP/dtmin declined, which correlated with gradual elevations in LVEDP (to ∼45 mmHg) as mice approached exhaustion. All parameters rapidly normalized postexercise. Consistent with human studies, our findings demonstrate a disproportionate negative impact of acute exhaustive exercise on RVs that persisted for at least 24 h. We speculate that the differential effects of exhaustive exercise on the ventricles arise from a ∼2-fold greater hemodynamic load in the RV than in LV originating from profound elevations in LVEDPs as mice approach exhaustion.NEW & NOTEWORTHY Acute exhaustive exercise differentially impacts the right ventricle (RV) versus left ventricle (LV), yet the underlying hemodynamic basis remains unclear. Using pressure-volume analyses and pressure-telemetry implantation in mice, we confirmed a marked disproportionate and persistent negative impact of exhaustive exercise on the RV. These differences in responses of the ventricles to exhaustive exercise are of clinical relevance, reflecting ∼2-fold greater hemodynamic RV loads versus LVs arising from massive (∼45 mmHg) increases in LV end-diastolic pressures at exhaustion.


Subject(s)
Cardiomegaly, Exercise-Induced , Heart/physiology , Hemodynamics , Physical Endurance , Swimming , Ventricular Function, Left , Ventricular Function, Right , Adaptation, Physiological , Animals , Male , Mice , Stroke Volume , Time Factors , Ventricular Pressure
8.
Front Physiol ; 11: 605671, 2020.
Article in English | MEDLINE | ID: mdl-33424629

ABSTRACT

Atrial Fibrillation (AF) is the most common supraventricular tachyarrhythmia that is typically associated with cardiovascular disease (CVD) and poor cardiovascular health. Paradoxically, endurance athletes are also at risk for AF. While it is well-established that persistent AF is associated with atrial fibrosis, hypertrophy and inflammation, intensely exercised mice showed similar adverse atrial changes and increased AF vulnerability, which required tumor necrosis factor (TNF) signaling, even though ventricular structure and function improved. To identify some of the molecular factors underlying the chamber-specific and TNF-dependent atrial changes induced by exercise, we performed transcriptome analyses of hearts from wild-type and TNF-knockout mice following exercise for 2 days, 2 or 6 weeks of exercise. Consistent with the central role of atrial stretch arising from elevated venous pressure in AF promotion, all 3 time points were associated with differential regulation of genes in atria linked to mechanosensing (focal adhesion kinase, integrins and cell-cell communications), extracellular matrix (ECM) and TNF pathways, with TNF appearing to play a permissive, rather than causal, role in gene changes. Importantly, mechanosensing/ECM genes were only enriched, along with tubulin- and hypertrophy-related genes after 2 days of exercise while being downregulated at 2 and 6 weeks, suggesting that early reactive strain-dependent remodeling with exercise yields to compensatory adjustments. Moreover, at the later time points, there was also downregulation of both collagen genes and genes involved in collagen turnover, a pattern mirroring aging-related fibrosis. By comparison, twofold fewer genes were differentially regulated in ventricles vs. atria, independently of TNF. Our findings reveal that exercise promotes TNF-dependent atrial transcriptome remodeling of ECM/mechanosensing pathways, consistent with increased preload and atrial stretch seen with exercise. We propose that similar preload-dependent mechanisms are responsible for atrial changes and AF in both CVD patients and athletes.

SELECTION OF CITATIONS
SEARCH DETAIL
...