Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 9(8)2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30060533

ABSTRACT

Ensifer (Sinorhizobium) sp. M14 is an efficient arsenic-oxidizing bacterium (AOB) that displays high resistance to numerous metals and various stressors. Here, we report the draft genome sequence and genome-guided characterization of Ensifer sp. M14, and we describe a pilot-scale installation applying the M14 strain for remediation of arsenic-contaminated waters. The M14 genome contains 6874 protein coding sequences, including hundreds not found in related strains. Nearly all unique genes that are associated with metal resistance and arsenic oxidation are localized within the pSinA and pSinB megaplasmids. Comparative genomics revealed that multiple copies of high-affinity phosphate transport systems are common in AOBs, possibly as an As-resistance mechanism. Genome and antibiotic sensitivity analyses further suggested that the use of Ensifer sp. M14 in biotechnology does not pose serious biosafety risks. Therefore, a novel two-stage installation for remediation of arsenic-contaminated waters was developed. It consists of a microbiological module, where M14 oxidizes As(III) to As(V) ion, followed by an adsorption module for As(V) removal using granulated bog iron ores. During a 40-day pilot-scale test in an abandoned gold mine in Zloty Stok (Poland), water leaving the microbiological module generally contained trace amounts of As(III), and dramatic decreases in total arsenic concentrations were observed after passage through the adsorption module. These results demonstrate the usefulness of Ensifer sp. M14 in arsenic removal performed in environmental settings.

2.
Front Chem ; 6: 54, 2018.
Article in English | MEDLINE | ID: mdl-29616211

ABSTRACT

The main element of PbRS (passive (bio)remediation systems) are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (ad)sorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (micro)organisms used in these systems. Our previous studies showed that bog iron ores (BIOs) meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i) to investigate the ability of granulated BIOs (gBIOs) to remove arsenic from various types of contaminated waters, and (ii) to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed, that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (ad)sorption of other elements, i.e., zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite) were effectively removed. Arsenic concentration after treatment was <100 µg/L, which is below the limit for industrial water.

3.
Chemosphere ; 188: 99-109, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28881245

ABSTRACT

Adsorption plays a significant role in remediation of waters contaminated with arsenic, but the efficiency of the process varies depending on the sorbent properties. Bog iron ores (BIOs), characterized by high sorption capacity and widespread availability, seem to be an optimal sorbent of arsenic. However, the use of BIOs for arsenic removal from waters may be limited by the high amount of organic matter, which may stimulate microbial activity, and thus decomposition of the sorbent. The aim of this study was to determine the effect of organic matter removal by thermal transformation (roasting) on the bioavailability of BIOs and their arsenic sorption capacity. For this purpose, the influence of bacterial growth and activity on untreated and treated BIOs, unloaded and loaded with arsenic, was studied. Moreover, the chemical and physical properties (including FTIR and desorption of arsenic) of BIOs were investigated as well. The results show that the removal of organic matter increases the stability of BIOs, and thus reduces the bioavailability of the immobilized arsenic.


Subject(s)
Arsenic/analysis , Ferric Compounds/chemistry , Hot Temperature , Humic Substances/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Arsenic/chemistry , Oxides , Pseudomonas/growth & development , Sinorhizobium/growth & development , Water Pollutants, Chemical/chemistry
4.
Sci Total Environ ; 598: 680-689, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28454040

ABSTRACT

Dissimilatory arsenate reducing bacteria (DARB) are known to contribute to the mobilization of arsenic and other elements from minerals. Despite this, metabolic capabilities of only a few DARB strains have been thoroughly investigated so far, and the influence of these bacteria on the bioavailability of arsenic in the environment is still a topic for discussion. In this study, Aeromonas sp. O23A, one of the dominant DARB strains found in the Zloty Stok mine (SW Poland), was subjected to a detailed physiological and functional analysis aimed to identify the actual environmental impact of this strain. Physiological analyses revealed that O23A is a facultative anaerobe, capable of utilizing arsenate as a respiratory substrate and acetate, citrate and lactate as electron donors. Arsenate reduction was observed within the first 24h of culturing. The strain shows high resistance to arsenic and several other heavy metals (i.a. Cu, Fe, Ni and Zn) as well tolerance to a broad range of physico-chemical conditions. Metabolic preferences of O23A were thoroughly investigated using Biolog™ MicroArray assay. The strain was found to produce hydroxamate siderophores, potentially involved in the mobilization of iron and co-occurring heavy metals from minerals. On the other hand, O23A showed high adherence abilities, and its involvement in biofilm formation may lead to the entrapment of dissolved arsenic species and other toxic ions. The results shed light on the importance of arsenic respiration and resistance in the overall metabolism of Aeromonas sp. O23A and confirmed its key role in the biogeochemical cycle of arsenic, also in the context of self-purification of heavy-metal-contaminated waters.


Subject(s)
Aeromonas/physiology , Arsenates/metabolism , Arsenic/metabolism , Environmental Microbiology , Metals, Heavy/metabolism , Mining , Oxidation-Reduction , Poland
SELECTION OF CITATIONS
SEARCH DETAIL
...