Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Robot ; 6(56)2021 07 21.
Article in English | MEDLINE | ID: mdl-34290101

ABSTRACT

A swarm of simple active particles confined in a flexible scaffold is a promising system to make mobile and deformable superstructures. These soft structures can perform tasks that are difficult to carry out for monolithic robots because they can infiltrate narrow spaces, smaller than their size, and move around obstacles. To achieve such tasks, the origin of the forces the superstructures develop, how they can be guided, and the effects of external environment, especially geometry and the presence of obstacles, need to be understood. Here, we report measurements of the forces developed by such superstructures, enclosing a number of mindless active rod-like robots, as well as the forces exerted by these structures to achieve a simple function, crossing a constriction. We relate these forces to the self-organization of the individual entities. Furthermore, and based on a physical understanding of what controls the mobility of these superstructures and the role of geometry in such a process, we devise a simple strategy where the environment can be designed to bias the mobility of the superstructure, giving rise to directional motion. Simple tasks-such as pulling a load, moving through an obstacle course, or cleaning up an arena-are demonstrated. Rudimentary control of the superstructures using light is also proposed. The results are of relevance to the making of robust flexible superstructures with nontrivial space exploration properties out of a swarm of simpler and cheaper robots.

2.
Sci Rep ; 10(1): 17133, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33028953

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 14863, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32913261

ABSTRACT

The processes in which droplets evaporate from solid surfaces, leaving behind distinct deposition patterns, have been studied extensively for variety of solutions. In this work, by combining different microscopy techniques (confocal fluorescence, video and Raman) we investigate pattern formation and evaporation-induced phase change in drying oil-in-water emulsion drops. This combination of techniques allows us to perform drop shape analysis while visualizing the internal emulsion structure simultaneously. We observe that drying of the continuous water phase of emulsion drops on hydrophilic surfaces favors the formation of ring-like zones depleted of oil droplets at the contact line, which originate from geometrical confinement of oil droplets by the meniscus. From such a depletion zone, a "coffee ring" composed of surfactant molecules forms as the water evaporates. On all surfaces drying induces emulsion destabilization by coalescence of oil droplets, commencing at the drop periphery. For hydrophobic surfaces, the coalescence of the oil droplets leads to a uniform oil film spreading out from the initial contact line. The evaporation dynamics of these composite drops indicate that the water in the continuous phase of the emulsion drops evaporates predominantly by diffusion through the vapor, showing no large differences to the evaporation of simple water drops.

4.
Phys Rev Lett ; 124(20): 208006, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32501051

ABSTRACT

We investigate the aggregation and phase separation of thin, living T. tubifex worms that behave as active polymers. Randomly dispersed active worms spontaneously aggregate to form compact, highly entangled blobs, a process similar to polymer phase separation, and for which we observe power-law growth kinetics. We find that the phase separation of active polymerlike worms does not occur through Ostwald ripening, but through active motion and coalescence of the phase domains. Interestingly, the growth mechanism differs from conventional growth by droplet coalescence: the diffusion constant characterizing the random motion of a worm blob is independent of its size, a phenomenon that can be explained from the fact that the active random motion arises from the worms at the surface of the blob. This leads to a fundamentally different phase-separation mechanism that may be unique to active polymers.

5.
Phys Rev Lett ; 124(18): 188002, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32441969

ABSTRACT

We experimentally study the rheology of long, slender, and entangled living worms (Tubifex Tubifex). Their level of activity can be controlled by changing the temperature or by adding small amounts of alcohol to make the worms temporarily inactive. Performing classical rheology experiments on this entangled polymer-like system, we find that the rheology is qualitatively similar to that of usual polymers, but, quantitatively, (i) shear thinning is reduced by activity, (ii) the characteristic shear rate for the onset of shear-thinning is given by the time scale of the activity, and (iii) the low shear viscosity as a function of concentration shows a very different scaling from that of regular polymers. Our study paves the way towards a new experimental research field of active "polymer-like worms."

6.
Phys Rev Lett ; 120(19): 194501, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29799250

ABSTRACT

Pearling instabilities of slender viscoelastic threads have received much attention, but remain incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-a-string structure arises from a capillary instability whereas the blistering instability has a different origin: it is due to a coupling between stress and polymer concentration. By varying the temperature to change the solution properties we elucidate the interplay between flow and phase separation.

7.
Phys Rev Lett ; 120(18): 188002, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29775342

ABSTRACT

Simple ingredients, such as well-defined interactions and couplings for the velocity and orientation of self-propelled objects, are sufficient to produce complex collective behavior in assemblies of such entities. Here, we use assemblies of rodlike robots made motile through self-vibration. When confined in circular arenas, dilute assemblies of these rods act as a gas. Increasing the surface fraction leads to a collective behavior near the boundaries: polar clusters emerge while, in the bulk, gaslike behavior is retained. The coexistence between a gas and surface clusters is a direct consequence of inertial effects as shown by our simulations. A theoretical model, based on surface mediated transport accounts for this coexistence and illustrates the exact role of the boundaries. Our study paves the way towards the control of collective behavior: By using deformable but free to move arenas, we demonstrate that the surface induced clusters can lead to directed motion, while the topology of the surface states can be controlled by biasing the motility of the particles.

8.
Phys Rev Lett ; 121(25): 254501, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608844

ABSTRACT

The breakup of low-viscosity droplets like water is a ubiquitous and rich phenomenon. Theory predicts that in the inviscid limit one observes a finite-time singularity, giving rise to a universal power law, with a prefactor that is universal for a given density and surface tension. This universality has been proposed as a powerful tool to determine the dynamic surface tension at short time scales. We combine high-resolution experiments and simulations to show that this universality is unobservable in practice: in contrast to previous studies, we show that fluid and system parameters do play a role; notably a small amount of viscosity is sufficient to alter the breakup dynamics significantly.

9.
Langmuir ; 34(4): 1363-1370, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29239613

ABSTRACT

As an air bubble translates in a microchannel, a thin film of liquid is formed on the bounding walls. In a microchannel with a rectangular cross-section, the liquid in the film leaks toward the low-pressure corners of the geometry, which leads to the appearance of local minima in the film thickness in the cross-sectional plane. In such a configuration, theory suggests that the minimum film thickness scales with Ca and Ca4/3 depending on the distance from the nose of the bubble, where Ca = µUb/γ is the flow capillary number based on the bubble velocity Ub, liquid viscosity µ, and surface tension γ, and Ca ≪ 1. We show that the film of a partially wetting liquid dewets on the channel wall at the sites of the local minima in the film thickness as it acquires thicknesses around and below 100 nm. Our experiments show that the distance Lw between the nose of the bubble and the initial dewetting location is a function of Ca and surface wettability. For channels of different wettability, Lw always scales proportional to Caα, where 1.7 < α < 2 for the range of 10-5 < Ca < 10-2. Moreover, Lw increases up to 10 times by enhancing the wettability of the surface at a given Ca. Our present measurements of Lw provide a design constraint on the lengths of bubbles to maintain a liquid wet channel without dry patches on the wall.

10.
Nat Commun ; 7: 12458, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27506626

ABSTRACT

Coating surfaces with different fluids is prone to instability producing inhomogeneous films and patterns. The contact line between the coating fluid and the surface to be coated is host to different instabilities, limiting the use of a variety of coating techniques. Here we take advantage of the instability of a receding contact line towards cusp and droplet formation to produce linear patterns of variable spacings. We stabilize the instability of the cusps towards droplet formation by using polymer solutions that inhibit this secondary instability and give rise to long slender cylindrical filaments. We vary the speed of deposition to change the spacing between these filaments. The combination of the two gives rise to linear patterns into which different colloidal particles can be embedded, long DNA molecules can be stretched and particles filtered by size. The technique is therefore suitable to prepare anisotropic structures with variable properties.

11.
Langmuir ; 31(22): 5971-81, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26000801

ABSTRACT

Rigid blade coating of glass plates by oil-in-water emulsions stabilized by surfactants is studied. Complete surface coverage is obtained only for speeds exceeding a threshold velocity dependent on the height between the blade end and the surface. Below this threshold, the emulsion can be inverted in the vicinity of the blade. The inversion dynamics of the oil-in-water emulsion and the deposition patterns induced by this phase inversion are studied using a microscope mounted set up. We show that these dynamics are universal for different volume fractions and deposition velocities. This inversion as well as the destabilization of the emulsion film deposited at high speeds gives rise to different patterns on the glass surface. These patterns are discussed in terms of the emulsion characteristics as well as the deposition velocity.

SELECTION OF CITATIONS
SEARCH DETAIL
...