Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2301499, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200600

ABSTRACT

Vascular corrosion casting is a method used to visualize the three dimensional (3D) anatomy and branching pattern of blood vessels. A polymer resin is injected in the vascular system and, after curing, the surrounding tissue is removed. The latter often deforms or even fractures the fragile cast. Here, a method is proposed that does not require corrosion, and is based on in situ micro computed tomography (micro-CT) scans. To overcome the lack of CT contrast between the polymer cast and the animals' surrounding soft tissue, hafnium oxide nanocrystals (HfO2 NCs) are introduced as CT contrast agents into the resin. The NCs dramatically improve the overall CT contrast of the cast and allow for straightforward segmentation in the CT scans. Careful design of the NC surface chemistry ensures the colloidal stability of the NCs in the casting resin. Using only 5 m% of HfO2 NCs, high-quality cardiovascular casts of both zebrafish and mice can be automatically segmented using CT imaging software. This allows to differentiate even µ $\umu$ m-scale details without having to alter the current resin injection methods. This new method of virtual dissection by visualizing casts in situ using contrast-enhanced CT imaging greatly expands the application potential of the technique.

2.
JACS Au ; 2(3): 711-722, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373200

ABSTRACT

Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids, and catechols to metal oxide nanocrystals in polar media. Using nuclear magnetic resonance spectroscopy and dynamic light scattering, we map out the pH-dependent binding affinity of the ligands toward hafnium oxide nanocrystals (an NMR-compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 to pH 6. Phosphonic acids, on the other hand, provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH <8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). Whereas dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate-buffered saline, the tightly bound nitrocatechols provide long-term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.

3.
Chem Commun (Camb) ; 57(38): 4694-4697, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33977984

ABSTRACT

We designed and synthesized two resorcin[4]arene scaffolds with four phosphate binding groups. The ligands effectively bind in at least a tridentate fashion at low surface coverage. The superior binding affinity is demonstrated using solution NMR spectroscopy and exceeds that of single phosphonates.

SELECTION OF CITATIONS
SEARCH DETAIL
...