Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Br J Haematol ; 162(2): 191-201, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23647373

ABSTRACT

Tefinostat (CHR-2845) is a monocyte/macrophage targeted histone deacetylase inhibitor (HDACi). This first-in-human, standard 3 + 3 dose escalating trial of oral, once daily tefinostat was conducted to determine the safety, tolerability, pharmacokinetic and pharmacodynamic profile of tefinostat in relapsed/refractory haematological diseases. Eighteen patients were enrolled at doses of 20-640 mg. Plasma concentrations of tefinostat exceeded those demonstrated to give in vitro anti-proliferative activity. Flow cytometric pharmacodynamic assays demonstrated monocyte-targeted increases in protein acetylation, without corresponding changes in lymphocytes. Dose-limiting toxicities (DLTs) were not observed and dose escalation was halted at 640 mg without identification of the maximum tolerated dose. Drug-related toxicities were largely Common Toxicity Criteria for Adverse Events grade 1/2 and included nausea, anorexia, fatigue, constipation, rash and increased blood creatinine. A patient with chronic monomyelocytic leukaemia achieved a bone marrow response, with no change in peripheral monocytes. An acute myeloid leukaemia type M2 patient showed a >50% decrease in bone marrow blasts and clearance of peripheral blasts. In conclusion, tefinostat produces monocyte-targeted HDACi activity and is well tolerated, without the DLTs, e.g. fatigue, diarrhoea, thrombocytopenia, commonly seen with non-targeted HDACi. The early signs of efficacy and absence of significant toxicity warrant further evaluation of tefinostat in larger studies. (clinicaltrials.gov identifier: NCT00820508).


Subject(s)
Anilides/administration & dosage , Anilides/adverse effects , Hematologic Neoplasms/drug therapy , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/adverse effects , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/adverse effects , Macrophages/metabolism , Monocytes/metabolism , Anilides/pharmacokinetics , Cohort Studies , Dose-Response Relationship, Drug , Drug Delivery Systems , Hematologic Neoplasms/blood , Hematologic Neoplasms/metabolism , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Hydroxamic Acids/pharmacokinetics , Macrophages/enzymology , Monocytes/enzymology
2.
Clin Cancer Res ; 18(9): 2687-94, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22553374

ABSTRACT

PURPOSE: This clinical trial investigated the safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) profile of CHR-3996, a selective class I histone deacetylase inhibitor. PATIENTS AND METHODS: CHR-3996 was administered orally once a day. This phase I trial used a 3+3 dose-escalation design. PK profiles were analyzed by liquid chromatography-tandem mass spectroscopic methods and PD studies were conducted using ELISA studying histone H3 acetylation in peripheral blood mononuclear cells. RESULTS: Thirty-nine patients were treated at dose levels of 5 mg (n = 3), 10 mg (n = 4), 20 mg (n = 3), 40 mg (n = 10), 80 mg (n = 10), 120 mg (n = 4), and 160 mg (n = 5) administered orally once daily. The dose-limiting toxicities seen were thrombocytopenia (160 mg), fatigue (80 and 120 mg), plasma creatinine elevation (80 and 120 mg), and atrial fibrillation (40 mg). The area under the curve was proportional to the administered dose and a maximal plasma concentration of 259 ng/mL at a dose of 40 mg exceeded the concentrations required for antitumor efficacy in preclinical models. Target inhibition measured by quantification of histone acetylation was shown at doses of 10 mg/d and was maximal at 40 mg. A partial response was seen in one patient with metastatic acinar pancreatic carcinoma. CONCLUSIONS: Taking the toxicity and PK/PD profile into consideration, the recommended phase II dose (RP2D) is 40 mg/d. At this dose, CHR-3996 has a favorable toxicologic, PK, and PD profile. CHR-3996 has shown preliminary clinical activity and should be evaluated in further clinical trials.


Subject(s)
Azabicyclo Compounds/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/chemistry , Neoplasms/drug therapy , Pyrimidines/therapeutic use , Acetylation , Administration, Oral , Adult , Aged , Azabicyclo Compounds/pharmacokinetics , Clinical Trials, Phase II as Topic , Female , Follow-Up Studies , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Male , Maximum Tolerated Dose , Middle Aged , Prognosis , Pyrimidines/pharmacokinetics , Tissue Distribution
3.
Chem Biol ; 11(12): 1651-8, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15610849

ABSTRACT

Costimulatory molecules are important regulators of T cell activation and thus favored targets for therapeutic manipulation of immune responses. One of the key costimulatory receptors is CD80, which binds the T cell ligands, CD28, and CTLA-4. We describe a set of small compounds that bind with high specificity and low nanomolar affinity to CD80. The compounds have relatively slow off-rates and block both CD28 and CTLA-4 binding, implying that they occlude the shared ligand binding site. The compounds inhibit proinflammatory cytokine release in T cell assays with submicromolar potency, and as such, they represent promising leads for the development of novel therapeutics for immune-mediated inflammatory disease. Our results also suggest that other predominantly beta proteins, such as those that dominate the cell surface, may also be accessible as potentially therapeutic targets.


Subject(s)
B7-1 Antigen/drug effects , Immunosuppressive Agents/pharmacology , Immunotherapy/methods , T-Lymphocytes/immunology , Antigens, CD , Antigens, Differentiation/drug effects , Antigens, Differentiation/immunology , B7-1 Antigen/immunology , CD28 Antigens/drug effects , CD28 Antigens/immunology , CTLA-4 Antigen , Cell Line , Cytokines/antagonists & inhibitors , Humans , Immunosuppressive Agents/chemical synthesis , Immunosuppressive Agents/chemistry , Interferon-gamma/antagonists & inhibitors , Interleukin-2/antagonists & inhibitors , Ligands , Lymphocyte Activation/drug effects , Molecular Structure , Molecular Weight , Protein Binding/drug effects , Sensitivity and Specificity , Structure-Activity Relationship , T-Lymphocytes/drug effects , Time Factors , Tumor Necrosis Factor-alpha/antagonists & inhibitors
4.
Plant J ; 38(1): 49-59, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15053759

ABSTRACT

Expression of one specific isoform of plastidic glucose 6-phosphate dehydrogenase (G6PDH) was manipulated in transgenic tobacco. Antisense and sense constructs of the endogenous P2 form of G6PDH were used to transform plants under the control of the cauliflower mosaic virus (CaMV) 35S promotor. Recombinant plants with altered expression were taken through to homozygosity by selective screening. Northern analyses revealed substantial changes in the expression of the P2 form of G6PDH, with no apparent impact on the activity of the cytosolic isoenzyme. Analysis of G6PDH activity in chloroplasts showed that despite the large changes in expression of P2-G6PDH, the range of enzyme activity varied only from approximately 50 to 200% of the wild type, reflecting the presence of a second G6PDH chloroplastic isoform (P1). Although none of the transgenic plants showed any visible phenotype, there were marked differences in metabolism of both sense and antisense lines when compared with wild-type/control lines. Sucrose, glucose and fructose contents of leaves were higher in antisense lines, whereas in overexpressing lines, the soluble sugar content was reduced below that of control plants. Even more striking was the observation that contents of glucose 6-phosphate (Glc6P) and 6-phosphogluconate (6PG) changed, such that the ratio of Glc6P:6PG was some 2.5-fold greater in the most severe antisense lines, compared with those with the highest levels of overexpression. Because of the distinctive biochemical properties of P2-G6PDH, we investigated the impact of altered expression on the contents of antioxidants and the response of plants to oxidative stress induced by methyl viologen (MV). Plants with decreased expression of P2-G6PDH showed increased content of reduced glutathione (GSH) compared to other lines. They also possessed elevated contents of ascorbate and exhibited a much higher ratio of reduced:oxidised ascorbate. When exposed to MV, leaf discs of wild-type and overexpressing lines demonstrated increased oxidative damage as measured by lipid peroxidation. Remarkably, leaf discs from plants with decreased P2-G6PDH did not show any change in lipid peroxidation in response to increasing concentrations of up to 15 micro m MV. The results are discussed from the perspective of the role of G6PDH in carbohydrate metabolism and oxidative stress. It is suggested that the activity of P2-G6PDH may be crucial in balancing the redox poise in chloroplasts.


Subject(s)
Carbohydrate Metabolism , Glucosephosphate Dehydrogenase/metabolism , Nicotiana/metabolism , Base Sequence , Chloroplasts/enzymology , DNA, Antisense/genetics , DNA, Plant/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glucosephosphate Dehydrogenase/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Oxidative Stress , Phenotype , Plant Leaves/metabolism , Plants, Genetically Modified , Nicotiana/enzymology , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...