Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(28): 7295-7301, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38980149

ABSTRACT

Ion mobility spectrometry at room temperature was combined with vibrationally resolved electronic spectroscopy of mass-selected ions at 5 K to study the well-known cationic fluorophore acriflavine. One- and two-color photodepletion action spectra recorded in gas-phase (by helium tagging) as well as dispersed fluorescence spectra obtained in neon matrix (after soft-landing deposition) indicate that the primary cation mass electrosprayed from solution comprises two isomers with different optical properties. Theory at the TD-DFT level allowed full spectral assignment. The results have implications for the preparation of novel thin film photonic materials by low-energy ion beam deposition.

2.
J Phys Chem Lett ; 14(47): 10553-10560, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37975705

ABSTRACT

Exploring how charge-changing affects the photoluminescence of small organic dyes presents challenges. Here, helium tagging photodissociation (PD) action spectroscopy in the gas phase and dispersed laser-induced fluorescence (DF) spectroscopy in the solid Ne matrix are used to compare the intrinsic photophysical properties of pyronin Y cation [PY]+ and its one electron-reduced neutral radical [PY]• at 5 K. Whereas the cation shows efficient visible photoluminescence, no emission from the neutral, in line with theoretical predictions, was detected. B3LYP/aug-cc-pVDZ calculations based on the TD-DFT/FCHT method allow for unambiguous assignment of recorded vibrationally resolved absorption and emission spectra. Surprisingly, our experimental sensitivity was high enough to also observe electronic preresonance Raman (ePR-Raman) spectra of [PY]+, with a significant efficiency factor (EF). These characteristics of the [PY]•/[PY]+ pair suggest that appropriately functionalized derivatives may open new perspectives in the area of in vivo bioimagining microscopy and find applications in various sophisticated stimulated-Raman spectroscopies.

3.
Phys Chem Chem Phys ; 24(35): 20913-20920, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36017635

ABSTRACT

The infrared photodissociation spectra of He-tagged (Al2O3)nFeO+ (n = 2-5), are reported in the Al-O and Fe-O stretching and bending spectral region (430-1200 cm-1) and assigned based on calculated harmonic IR spectra from density functional theory (DFT). The substitution of Fe for an Al center occurs preferentially at 3-fold oxygen coordination sites located at the cluster rim and with the Fe atom in the +III oxidation state. The accompanying elongation of metal oxygen bonds leaves the Al-O network structure nearly unperturbed (isomorphous substitution). Contrary to the Al2FeO4+ (n = 1), valence isomerism is not observed, which is attributed to a smaller M:O ratio (M = Al, Fe) and consequently decreasing electron affinities with increasing cluster size.

4.
Angew Chem Int Ed Engl ; 61(25): e202201577, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35349208

ABSTRACT

Probing electrofluorochromism (EFC) at the molecular level remains challenging. Here we study the strongly charge state-dependent photoluminescence of vanadyl phthalocyanine. We report vibrationally resolved absorption and laser-induced fluorescence (LIF) spectra of samples comprising both the mass-selected neutral molecule (VOPc⋅, a stable radical) and its cation produced upon electron ionization (EI) isolated in 5 K neon matrices. Ionization of the essentially non-emissive VOPc⋅ forms a high-spin diradical cation (VOPc+.. ) which shows profound photoluminescence (PL) in the NIR range. This unique phenomenon is potentially of interest for NIR-emitting electro-optic devices.

5.
J Phys Chem A ; 125(43): 9527-9535, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34693712

ABSTRACT

Isolated nickel-doped aluminum oxide cations (NiOm)(Al2O3)n(AlO)+ with m = 1-2 and n = 1-3 are investigated by infrared photodissociation (IRPD) spectroscopy in combination with density functional theory and the single-component artificial force-induced reaction method. IRPD spectra of the corresponding He-tagged cations are reported in the 400-1200 cm-1 spectral range and assigned based on a comparison to calculated harmonic IR spectra of low-energy isomers. Simulated spectra of the lowest energy structures generally match the experimental spectra, but multiple isomers may contribute to the spectra of the m = 2 series. The identified structures of the oxides (m = 1) correspond to inserting a Ni-O moiety into an Al-O bond of the corresponding (Al2O3)1-3(AlO)+ cluster, yielding either a doubly or triply coordinated Ni2+ center. The m = 2 clusters prefer similar structures in which the additional O atom either is incorporated into a peroxide unit, leaving the oxidation state of the Ni2+ atom unchanged, or forms a biradical comprising a terminal oxygen radical anion Al-O•- and a Ni3+ species. These clusters represent model systems for under-coordinated Ni sites in alumina-supported Ni catalysts and should prove helpful in disentangling the mechanism of selective oxidative dehydrogenation of alkanes by Ni-doped catalysts.

6.
J Am Chem Soc ; 142(42): 18050-18059, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33031700

ABSTRACT

We provide spectroscopic and computational evidence for a substantial change in structure and gas phase reactivity of Al3O4+ upon Fe-substitution, which is correctly predicted by multireference (MR) wave function calculations. Al3O4+ exhibits a cone-like structure with a central trivalent O atom (C3v symmetry). The replacement of the Al- by an Fe atom leads to a planar bicyclic frame with a terminal Al-O•- radical site, accompanied by a change from the Fe+III/O-II to the Fe+II/O-I valence state. The gas phase vibrational spectrum of Al2FeO4+ is exclusively reproduced by the latter structure, which MR wave function calculations correctly identify as the most stable isomer. This isomer of Al2FeO4+ is predicted to be highly reactive with respect to C-H bond activation, very similar to Al8O12+ which also features the terminal Al-O•- radical site. Density functional theory, in contrast, predicts a less reactive Al3O4+-like "isomorphous substitution" structure of Al2FeO4+ to be the most stable one, except for functionals with very high admixture of Fock exchange (50%, BHLYP).

7.
Proc Natl Acad Sci U S A ; 117(38): 23374-23379, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32878996

ABSTRACT

Alkanes and [B12X12]2- (X = Cl, Br) are both stable compounds which are difficult to functionalize. Here we demonstrate the formation of a boron-carbon bond between these substances in a two-step process. Fragmentation of [B12X12]2- in the gas phase generates highly reactive [B12X11]- ions which spontaneously react with alkanes. The reaction mechanism was investigated using tandem mass spectrometry and gas-phase vibrational spectroscopy combined with electronic structure calculations. [B12X11]- reacts by an electrophilic substitution of a proton in an alkane resulting in a B-C bond formation. The product is a dianionic [B12X11CnH2n+1]2- species, to which H+ is electrostatically bound. High-flux ion soft landing was performed to codeposit [B12X11]- and complex organic molecules (phthalates) in thin layers on surfaces. Molecular structure analysis of the product films revealed that C-H functionalization by [B12X11]- occurred in the presence of other more reactive functional groups. This observation demonstrates the utility of highly reactive fragment ions for selective bond formation processes and may pave the way for the use of gas-phase ion chemistry for the generation of complex molecular structures in the condensed phase.

8.
Angew Chem Int Ed Engl ; 58(52): 18868-18872, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31637840

ABSTRACT

The gas-phase reaction of the heteronuclear oxide cluster [VPO4 ].+ with C2 H4 is studied under multiple collision conditions at 150 K using cryogenic ion-trap vibrational spectroscopy combined with electronic structure calculations. The exclusive formation of acetaldehyde is directly identified spectroscopically and discussed in the context of the underlying reaction mechanism. In line with computational predictions it is the terminal P=O and not the V=O unit that provides the oxygen atom in the barrier-free thermal C2 H4 →CH3 CHO conversion. Interestingly, in the course of the reaction, the emerging CH3 CHO product undergoes a rather complex intramolecular migration, coordinating eventually to the vanadium center prior to its liberation. Moreover, the spectroscopic structural characterization of neutral C2 H4 O deserves special mentioning as in most, if not all, ion/molecule reactions, the neutral product is usually only indirectly identified.

9.
Angew Chem Int Ed Engl ; 57(25): 7448-7452, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29696767

ABSTRACT

Cryogenic ion vibrational spectroscopy was used in combination with electronic structure calculations to identify the active site in the oxygen atom transfer reaction [AlVO4 ]+. +CO→[AlVO3 ]+. +CO2 . Infrared photodissociation spectra of messenger-tagged heteronuclear clusters demonstrate that in contrast to [AlVO4 ]+. , [AlVO3 ]+. is devoid of a terminal Al-Ot unit while the terminal V=Ot group remains intact. Thus it is the Al-Ot moiety that forms the active site in the [AlVOx ]+. /CO/N2 O (x=3, 4) redox couples, which is in line with theoretical predictions.

10.
Phys Chem Chem Phys ; 19(34): 23154-23161, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28820203

ABSTRACT

The mechanism of dissociative D2 adsorption on Ti2O4-, which serves as a model for an oxygen vacancy on a titania surface, is studied using infrared photodissociation spectroscopy in combination with density functional theory calculations and a recently developed single-component artificial force induced reaction method. Ti2O4- readily reacts with D2 under multiple collision conditions in a gas-filled ion trap held at 16 K forming a global minimum-energy structure (DO-Ti-(O)2-Ti(D)-O)-. The highly exergonic reaction proceeds quasi barrier-free via several intermediate species, involving heterolytic D2-bond cleavage followed by D-atom migration. We show that, compared to neutral Ti2O4, the excess negative charge in Ti2O4- is responsible for the substantial lowering of the D2 dissociation barrier, but does not affect the molecular D2 adsorption energy in the initial physisorption step.

11.
J Phys Chem Lett ; 8(6): 1272-1277, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28262025

ABSTRACT

We use cryogenic ion trap vibrational spectroscopy in combination with density functional theory (DFT) to study the adsorption of up to four water molecules on Al3O4+. The infrared photodissociation spectra of [Al3O4(D2O)1-4]+ are measured in the O-D stretching (3000-2000 cm-1) as well as the fingerprint spectral region (1300-400 cm-1) and are assigned based on a comparison with simulated harmonic infrared spectra for global minimum-energy structures obtained with DFT. We find that dissociative water adsorption is favored in all cases. The unambiguous assignment of the vibrational spectra of these gas phase model systems allows identifying characteristic spectral regions for O-D and O-H stretching modes of terminal (µ1) and bridging (µ2) hydroxyl groups in aluminum oxide/water systems, which sheds new light on controversial assignments for solid Al2O3 phases.

12.
Angew Chem Int Ed Engl ; 56(2): 501-504, 2017 01 09.
Article in English | MEDLINE | ID: mdl-27918141

ABSTRACT

We use cryogenic ion vibrational spectroscopy to characterize the structure and fluxionality of the magic number boron cluster B13+ . The infrared photodissociation (IRPD) spectrum of the D2 -tagged all-11 B isotopologue of B13+ is reported in the spectral range from 435 to 1790 cm-1 and unambiguously assigned to a planar boron double wheel structure based on a comparison to simulated IR spectra of low energy isomers from density-functional-theory (DFT) computations. Born-Oppenheimer DFT molecular dynamics simulations show that B13+ exhibits internal quasi-rotation already at 100 K. Vibrational spectra derived from these simulations allow extracting the first spectroscopic evidence from the IRPD spectrum for the exceptional fluxionality of B13+ .

13.
J Chem Phys ; 144(12): 124308, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-27036449

ABSTRACT

We report infrared photodissociation (IRPD) spectra for the D2-tagged titanium oxide cluster anions (TiO2)n(-) with n = 3-8 in the spectral region from 450 to 1200 cm(-1). The IRPD spectra are interpreted with the aid of harmonic spectra from BP86/6-311+G* density functional theory calculations of energetically low-lying isomers. We conclusively assign the IRPD spectra of the n = 3 and n = 6 clusters to global minimum energy structures with Cs and C2 symmetry, respectively. The vibrational spectra of the n = 4 and n = 7 clusters can be attributed to contributions of at most two low-lying structures. While our calculations indicate that the n = 5 and n = 8 clusters have many more low-lying isomers than the other clusters, the dominant contributions to their spectra can be assigned to the lowest energy structures. Through comparison between the calculated and experimental spectra, we can draw conclusions about the size-dependent evolution of the properties of (TiO2)n(-) clusters, and on their potential utility as model systems for catalysis on a bulk TiO2 surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...