Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
AIMS Public Health ; 11(1): 58-109, 2024.
Article in English | MEDLINE | ID: mdl-38617415

ABSTRACT

In recent years, machine learning (ML) and deep learning (DL) have been the leading approaches to solving various challenges, such as disease predictions, drug discovery, medical image analysis, etc., in intelligent healthcare applications. Further, given the current progress in the fields of ML and DL, there exists the promising potential for both to provide support in the realm of healthcare. This study offered an exhaustive survey on ML and DL for the healthcare system, concentrating on vital state of the art features, integration benefits, applications, prospects and future guidelines. To conduct the research, we found the most prominent journal and conference databases using distinct keywords to discover scholarly consequences. First, we furnished the most current along with cutting-edge progress in ML-DL-based analysis in smart healthcare in a compendious manner. Next, we integrated the advancement of various services for ML and DL, including ML-healthcare, DL-healthcare, and ML-DL-healthcare. We then offered ML and DL-based applications in the healthcare industry. Eventually, we emphasized the research disputes and recommendations for further studies based on our observations.

2.
PLoS One ; 18(8): e0289881, 2023.
Article in English | MEDLINE | ID: mdl-37566580

ABSTRACT

Recent research has attempted to predict our perception of odorants using Machine Learning models. The featurization of the olfactory stimuli usually represents the odorants using molecular structure parameters, molecular fingerprints, mass spectra, or e-nose signals. However, the impact of the choice of featurization on predictive performance remains poorly reported in direct comparative studies. This paper experiments with different sensory features for several olfactory perception tasks. We investigate the multilabel classification of aroma molecules in odor descriptors. We investigate single-label classification not only in fine-grained odor descriptors ('orange', 'waxy', etc.), but also in odor descriptor groups. We created a database of odor vectors for 114 aroma molecules to conduct our experiments using a QCM (Quartz Crystal Microbalance) type smell sensor module (Aroma Coder®V2 Set). We compare these smell features with different baseline features to evaluate the cluster composition, considering the frequencies of the top odor descriptors carried by the aroma molecules. Experimental results suggest a statistically significant better performance of the QCM type smell sensor module compared with other baseline features with F1 evaluation metric.


Subject(s)
Olfactory Perception , Smell , Odorants , Electronic Nose , Machine Learning
3.
Sci Rep ; 12(1): 16297, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175481

ABSTRACT

Most of the olfactory perception works focused on forward prediction of odor impression, for example, given an odorant's molecular structure parameters or the sensing data predict its odor impression. So far, mapping of mass spectrum of odorant molecules into the odor perception space (binary or continuous sensory space) has been successfully performed. However, it is difficult to predict odorant's sensing data associated with binary odor descriptors (e.g., minty, peach, vanilla etc.). In this study, we have proposed a method to extract the corresponding sensing data (mass spectrum as sensing data) for a desired scent impression although one-to-one relationships are not usually guaranteed. Our target is to extract the sensing data for a given odor descriptor that will help perfumers to create scent. This study is first report for predicting sensing data for a given binary odor descriptor.


Subject(s)
Olfactory Perception , Vanilla , Mass Spectrometry , Odorants , Pheromones
4.
Comput Struct Biotechnol J ; 20: 4733-4745, 2022.
Article in English | MEDLINE | ID: mdl-36147663

ABSTRACT

Detection and Classification of a brain tumor is an important step to better understanding its mechanism. Magnetic Reasoning Imaging (MRI) is an experimental medical imaging technique that helps the radiologist find the tumor region. However, it is a time taking process and requires expertise to test the MRI images, manually. Nowadays, the advancement of Computer-assisted Diagnosis (CAD), machine learning, and deep learning in specific allow the radiologist to more reliably identify brain tumors. The traditional machine learning methods used to tackle this problem require a handcrafted feature for classification purposes. Whereas deep learning methods can be designed in a way to not require any handcrafted feature extraction while achieving accurate classification results. This paper proposes two deep learning models to identify both binary (normal and abnormal) and multiclass (meningioma, glioma, and pituitary) brain tumors. We use two publicly available datasets that include 3064 and 152 MRI images, respectively. To build our models, we first apply a 23-layers convolution neural network (CNN) to the first dataset since there is a large number of MRI images for the training purpose. However, when dealing with limited volumes of data, which is the case in the second dataset, our proposed "23-layers CNN" architecture faces overfitting problem. To address this issue, we use transfer learning and combine VGG16 architecture along with the reflection of our proposed "23 layers CNN" architecture. Finally, we compare our proposed models with those reported in the literature. Our experimental results indicate that our models achieve up to 97.8% and 100% classification accuracy for our employed datasets, respectively, exceeding all other state-of-the-art models. Our proposed models, employed datasets, and all the source codes are publicly available at: (https://github.com/saikat15010/Brain-Tumor-Detection).

5.
Cluster Comput ; : 1-41, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35996680

ABSTRACT

Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare field. Traditionally, the healthcare system works based on centralized agents sharing their raw data. Therefore, huge vulnerabilities and challenges are still existing in this system. However, integrating with AI, the system would be multiple agent collaborators who are capable of communicating with their desired host efficiently. Again, FL is another interesting feature, which works decentralized manner; it maintains the communication based on a model in the preferred system without transferring the raw data. The combination of FL, AI, and XAI techniques can be capable of minimizing several limitations and challenges in the healthcare system. This paper presents a complete analysis of FL using AI for smart healthcare applications. Initially, we discuss contemporary concepts of emerging technologies such as FL, AI, XAI, and the healthcare system. We integrate and classify the FL-AI with healthcare technologies in different domains. Further, we address the existing problems, including security, privacy, stability, and reliability in the healthcare field. In addition, we guide the readers to solving strategies of healthcare using FL and AI. Finally, we address extensive research areas as well as future potential prospects regarding FL-based AI research in the healthcare management system.

6.
Sci Rep ; 12(1): 6991, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484318

ABSTRACT

Emotion recognition is defined as identifying human emotion and is directly related to different fields such as human-computer interfaces, human emotional processing, irrational analysis, medical diagnostics, data-driven animation, human-robot communication, and many more. This paper proposes a new facial emotional recognition model using a convolutional neural network. Our proposed model, "ConvNet", detects seven specific emotions from image data including anger, disgust, fear, happiness, neutrality, sadness, and surprise. The features extracted by the Local Binary Pattern (LBP), region based Oriented FAST and rotated BRIEF (ORB) and Convolutional Neural network (CNN) from facial expressions images were fused to develop the classification model through training by our proposed CNN model (ConvNet). Our method can converge quickly and achieves good performance which the authors can develop a real-time schema that can easily fit the model and sense emotions. Furthermore, this study focuses on the mental or emotional stuff of a man or woman using the behavioral aspects. To complete the training of the CNN network model, we use the FER2013 databases at first, and then apply the generalization techniques to the JAFFE and CK+ datasets respectively in the testing stage to evaluate the performance of the model. In the generalization approach on the JAFFE dataset, we get a 92.05% accuracy, while on the CK+ dataset, we acquire a 98.13% accuracy which achieve the best performance among existing methods. We also test the system's success by identifying facial expressions in real-time. ConvNet consists of four layers of convolution together with two fully connected layers. The experimental results show that the ConvNet is able to achieve 96% training accuracy which is much better than current existing models. However, when compared to other validation methods, the suggested technique was more accurate. ConvNet also achieved validation accuracy of 91.01% for the FER2013 dataset. We also made all the materials publicly accessible for the research community at: https://github.com/Tanoy004/Emotion-recognition-through-CNN .


Subject(s)
Facial Recognition , Anger , Emotions , Facial Expression , Female , Humans , Male , Neural Networks, Computer
7.
Sci Rep ; 12(1): 3778, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260669

ABSTRACT

Predicting odor impression is considered an important step towards measuring the quality of scent in the food, perfume, and cosmetic industries. In odor impression identification and classification, the main target is to predict scent impression while identifying non-target odor impressions are less significant. However, the effectiveness of predictive models depends on the quality of data distribution. Since it is difficult to collect large scale sensory data to create an evenly distributed positive (target odor) and negative (non-target odor) samples, a method is necessary to predict the individual characteristics of scent according to the number of positive samples. Moreover, it is required to predict large number of individual odor impressions from such kind of imbalanced dataset. In this study, we used mass spectrum of flavor molecules and their corresponding odor impressions which have a very disproportioned ratio of positive and negative samples. Thus, we used One-class Classification Support Vector Machine (OCSVM) and Cost-Sensitive MLP (CSMLP) to precisely classify target scent impression. Our experimental results show satisfactory performance in terms of AUCROC to detect the olfactory impressions of 89 odor descriptors from the mass spectra of flavor molecules.


Subject(s)
Odorants , Smell , Mass Spectrometry , Pheromones , Support Vector Machine
8.
PLoS One ; 15(6): e0234688, 2020.
Article in English | MEDLINE | ID: mdl-32559255

ABSTRACT

There have been recent advances in predicting odor characteristics using molecular structure parameters of chemicals. Although the molecular structure parameters are available for each chemical, they cannot be used for chemical mixtures. This study will elucidate a computational method of predicting human odor perception from the mass spectra of chemical mixtures such as essential oils. Furthermore, a method for obtaining similarity among odor descriptors has been proposed although the dataset contains binary values only. When the database indicates a set of odor descriptors for one sample, only binary data are available and the correlation between the similar descriptors disappears. Thus, the prediction performance degrades for not considering the similarity among the odor descriptors. Since mass spectra dataset is highly dimensional, we use auto-encoder to learn the compressed representation from the mass spectra of essential oils in its bottleneck hidden layer and then accomplishes the hierarchical clustering to create odor descriptor groups with similar odor impressions using a matrix of continuous value-based correlation coefficient as well as natural language processing. This work will help to expatiate the process of overcoming binary value problem and find out the similarity among odor descriptors using machine learning with natural language semantic representation of words. To overcome the problem of disproportionate ratio of positive and negative class for both the continuous value-based correlation coefficient and word similarity based models, we use Synthetic Minority Oversampling Technique (SMOTE). This model allows us to predict human odor perception through computer simulations by forming odor descriptors group. Accordingly, this study demonstrates the feasibility of ensembling machine learning with natural language processing and SMOTE approach for predicting odor descriptor group from mass spectra of essential oils.


Subject(s)
Mass Spectrometry , Odorants/analysis , Oils, Volatile/analysis , Smell/physiology , Cluster Analysis , Humans , Models, Theoretical , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...