Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 658: 49-72, 2021.
Article in English | MEDLINE | ID: mdl-34517959

ABSTRACT

RNAs from various cells and tissues are modified in nearly 200 chemically distinct ways. These modifications can be deposited either on the 5' or 3' ends, or internally on the nucleobases or sugar backbone. 5'-end modifications are crucial for protecting RNAs from untimely degradation/processing, regulating their cellular functions, or discriminating endogenous RNAs from pathogenic RNAs. 5'-end phospho-methylation is a remarkable RNA modification that is enzymatically deposited either on the γ-phosphate of nascent triphosphorylated RNAs by human BCDIN3/MePCE, or on the α-phosphate of processed monophosphorylated RNAs by human BCDIN3D. These 5'-phospho-methyltransferases are part of the BIN3 family of O-methyltransferases conserved from S. pombe to humans and play important cellular and biological roles, many of which await further elucidation. Here, we quickly recapitulate historical methods for the detection of 5'-end phospho-methyl modifications, and focus more specifically on a method that can be used to detect and quantify α-monophosphate methylation from as low as 10-100ng of total RNA from cells or tissues. This method is important for deciphering the roles of BCDIN3D and its homologs across species, as well as serves as starting point for the development of new methods for detection of 5'-end modifications.


Subject(s)
Methyltransferases , RNA , Humans , Methylation , Methyltransferases/metabolism , RNA Processing, Post-Transcriptional
2.
Brief Funct Genomics ; 20(2): 77-85, 2021 03 27.
Article in English | MEDLINE | ID: mdl-33454749

ABSTRACT

Nearly 200 distinct chemical modifications of RNAs have been discovered to date. Their analysis via direct methods has been possible in abundant RNA species, such as ribosomal, transfer or viral RNA, since several decades. However, their analysis in less abundant RNAs species, especially cellular messenger RNAs, was rendered possible only recently with the advent of high throughput sequencing techniques. Given the growing biomedical interest of the proteins that write, erase and read RNA modifications, ingenious new methods to enrich and identify RNA modifications at base resolution have been implemented, and more efforts are underway to render them more quantitative. Here, we review several crucial modification-specific (bio)chemical approaches and discuss their advantages and shortcomings for exploring the epitranscriptome.


Subject(s)
RNA Processing, Post-Transcriptional , RNA , Biology , High-Throughput Nucleotide Sequencing , RNA/genetics , RNA, Messenger/metabolism , RNA, Viral
3.
Essays Biochem ; 64(5): 687-703, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32808652

ABSTRACT

Cells encounter a multitude of external and internal stress-causing agents that can ultimately lead to DNA damage, mutations and disease. A cascade of signaling events counters these challenges to DNA, which is termed as the DNA damage response (DDR). The DDR preserves genome integrity by engaging appropriate repair pathways, while also coordinating cell cycle and/or apoptotic responses. Although many of the protein components in the DDR are identified, how chemical modifications to DNA impact the DDR is poorly understood. This review focuses on our current understanding of DNA methylation in maintaining genome integrity in mammalian cells. DNA methylation is a reversible epigenetic mark, which has been implicated in DNA damage signaling, repair and replication. Sites of DNA methylation can trigger mutations, which are drivers of human diseases including cancer. Indeed, alterations in DNA methylation are associated with increased susceptibility to tumorigenesis but whether this occurs through effects on the DDR, transcriptional responses or both is not entirely clear. Here, we also highlight epigenetic drugs currently in use as therapeutics that target DNA methylation pathways and discuss their effects in the context of the DDR. Finally, we pose unanswered questions regarding the interplay between DNA methylation, transcription and the DDR, positing the potential coordinated efforts of these pathways in genome integrity. While the impact of DNA methylation on gene regulation is widely understood, how this modification contributes to genome instability and mutations, either directly or indirectly, and the potential therapeutic opportunities in targeting DNA methylation pathways in cancer remain active areas of investigation.


Subject(s)
DNA Methylation , Genome , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...