Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 197(11): 1963-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25825434

ABSTRACT

UNLABELLED: Reactive oxygen species (ROS) promote the synthesis of the DNA lesion 8-oxo-G, whose mutagenic effects are counteracted in distinct organisms by the DNA glycosylase MutM. We report here that in Bacillus subtilis, mutM is expressed during the exponential and stationary phases of growth. In agreement with this expression pattern, results of a Western blot analysis confirmed the presence of MutM in both stages of growth. In comparison with cells of a wild-type strain, cells of B. subtilis lacking MutM increased their spontaneous mutation frequency to Rif(r) and were more sensitive to the ROS promoter agents hydrogen peroxide and 1,1'-dimethyl-4,4'-bipyridinium dichloride (Paraquat). However, despite MutM's proven participation in preventing ROS-induced-DNA damage, the expression of mutM was not induced by hydrogen peroxide, mitomycin C, or NaCl, suggesting that transcription of this gene is not under the control of the RecA, PerR, or σ(B) regulons. Finally, the role of MutM in stationary-phase-associated mutagenesis (SPM) was investigated in the strain B. subtilis YB955 (hisC952 metB5 leuC427). Results revealed that under limiting growth conditions, a mutM knockout strain significantly increased the amount of stationary-phase-associated his, met, and leu revertants produced. In summary, our results support the notion that the absence of MutM promotes mutagenesis that allows nutritionally stressed B. subtilis cells to escape from growth-limiting conditions. IMPORTANCE: The present study describes the role played by a DNA repair protein (MutM) in protecting the soil bacterium Bacillus subtilis from the genotoxic effects induced by reactive oxygen species (ROS) promoter agents. Moreover, it reveals that the genetic inactivation of mutM allows nutritionally stressed bacteria to escape from growth-limiting conditions, putatively by a mechanism that involves the accumulation and error-prone processing of oxidized DNA bases.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , DNA Damage , DNA Glycosylases/metabolism , Mutagenesis , Bacillus subtilis/growth & development , Bacillus subtilis/physiology , Bacterial Proteins/genetics , DNA Glycosylases/genetics , Gene Expression Regulation, Bacterial , Oxidative Stress , Stress, Physiological
2.
J Bacteriol ; 193(1): 236-45, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20971907

ABSTRACT

Stress-promoted mutations that occur in nondividing cells (adaptive mutations) have been implicated strongly in causing genetic variability as well as in species survival and evolutionary processes. Oxidative stress-induced DNA damage has been associated with generation of adaptive His(+) and Met(+) but not Leu(+) revertants in strain Bacillus subtilis YB955 (hisC952 metB5 leuC427). Here we report that an interplay between MutY and MutSL (mismatch repair system [MMR]) plays a pivotal role in the production of adaptive Leu(+) revertants. Essentially, the genetic disruption of MutY dramatically reduced the reversion frequency to the leu allele in this model system. Moreover, the increased rate of adaptive Leu(+) revertants produced by a MutSL knockout strain was significantly diminished following mutY disruption. Interestingly, although the expression of mutY took place during growth and stationary phase and was not under the control of RecA, PerR, or σ(B), a null mutation in the mutSL operon increased the expression of mutY several times. Thus, in starved cells, saturation of the MMR system may induce the expression of mutY, disturbing the balance between MutY and MMR proteins and aiding in the production of types of mutations detected by reversion to leucine prototrophy. In conclusion, our results support the idea that MMR regulation of the mutagenic/antimutagenic properties of MutY promotes stationary-phase mutagenesis in B. subtilis cells.


Subject(s)
Bacillus subtilis/metabolism , DNA Mismatch Repair/physiology , Gene Expression Regulation, Bacterial/physiology , Bacillus subtilis/cytology , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Cell Cycle , Hydrogen Peroxide/pharmacology , Mitomycin/pharmacology , Mutagenesis , Mutation , Sodium Chloride/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...