Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21264363

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines elicit higher levels of antibodies compared to natural SARS-CoV-2 infections in most individuals; however, the specificities of antibodies elicited by vaccination versus infection remain incompletely understood. Here, we characterized the magnitude and specificity of SARS-CoV-2 spike-reactive antibodies from 10 acutely infected health care workers and 23 participants who received mRNA-based SARS-CoV-2 vaccines. We found that infection and primary mRNA vaccination elicited S1 and S2-reactive antibodies, while secondary vaccination boosted mostly S1 antibodies. Using magnetic bead-based absorption assays, we found that SARS-CoV-2 infections elicited a large proportion of original antigenic sin-like antibodies that bound efficiently to common seasonal human coronaviruses but poorly to SARS-CoV-2. In converse, vaccination only modestly boosted antibodies reactive to common seasonal human coronaviruses and these antibodies bound efficiently to SARS-CoV-2. Our data indicate that SARS-CoV-2 mRNA vaccinations elicit fundamentally different antibody responses compared to SARS-CoV-2 infections. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=199 SRC="FIGDIR/small/21264363v1_ufig1.gif" ALT="Figure 1"> View larger version (34K): org.highwire.dtl.DTLVardef@1352972org.highwire.dtl.DTLVardef@13419bcorg.highwire.dtl.DTLVardef@18595a5org.highwire.dtl.DTLVardef@1238eac_HPS_FORMAT_FIGEXP M_FIG C_FIG HIGHLIGHTSO_LISARS-CoV-2 mRNA vaccines elicit higher levels of antibodies compared to SARS-CoV-2 infections C_LIO_LIThe first dose of an mRNA vaccine generates both S1 and S2 responses while the second dose boosts primarily S1-specific antibodies C_LIO_LISARS-CoV-2 infections, but not mRNA vaccinations, elicit high levels of antibodies that bind strongly to seasonal coronaviruses but weakly to SARS-CoV-2 C_LI

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-442279

ABSTRACT

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibit higher basal levels of activation measured by P-selectin surface expression, and have a poor functional reserve upon in vitro stimulation. Correlating clinical features to the ability of plasma from COVID-19 patients to stimulate control platelets identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the Fc{gamma}RIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions, thus identifying these potentially actionable pathways as central for platelet activation and/or vascular complications in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect. These studies have implications for the role of platelet hyperactivation in complications associated with SARS-CoV-2 infection. Cover illustration O_FIG_DISPLAY_L [Figure 1] M_FIG_DISPLAY C_FIG_DISPLAY One-sentence summaryThe Fc{gamma}RIIA and C5a-C5aR pathways mediate platelet hyperactivation in COVID-19

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21255324

ABSTRACT

Recent common coronavirus (CCV) infections are associated with reduced COVID-19 severity upon SARS-CoV-2 infection, however the immunological mechanisms involved are unknown. We completed serological assays using samples collected from health care workers to identify antibody types associated with SARS-CoV-2 protection and COVID-19 severity. Rare SARS-CoV-2 cross-reactive antibodies elicited by past CCV infections were not associated with protection; however, the duration of symptoms following SARS-CoV-2 infections was significantly reduced in individuals with higher common betacoronavirus ({beta}CoV) antibody titers. Since antibody titers decline over time after CCV infections, individuals in our cohort with higher {beta}CoV antibody titers were more likely recently infected with common {beta}CoVs compared to individuals with lower antibody titers. Therefore, our data suggest that recent {beta}CoV infections potentially limit the severity of SARS-CoV-2 infections through mechanisms that do not involve cross-reactive antibodies. Our data are consistent with the emerging hypothesis that cellular immune responses elicited by recent common {beta}CoV infections transiently reduce disease severity following SARS-CoV-2 infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...