Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(11): 13009-13021, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33689261

ABSTRACT

Thin film semiconductors grown using chemical bath methods produce large amounts of waste solvent and chemicals that then require costly waste processing. We replace the toxic chemical bath deposited CdS buffer layer from our Cu(In,Ga)(S,Se)2 (CIGS)-based solar cells with a benign inkjet-printed and annealed Zn(O,S) layer using 230 000 times less solvent and 64 000 times less chemicals. The wetting and final thickness of the Zn(O,S) layer on the CIGS is controlled by a UV ozone treatment and the drop spacing, whereas the annealing temperature and atmosphere determine the final chemical composition and band gap. The best solar cell using a Zn(O,S) air-annealed layer had an efficiency of 11%, which is similar to the best conventional CdS buffer layer device fabricated in the same batch. Improving the Zn(O,S) wetting and annealing conditions resulted in the best device efficiency of 13.5%, showing the potential of this method.

2.
Eur Phys J E Soft Matter ; 42(8): 102, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31396728

ABSTRACT

We investigated the impact of sample preparation on the glassy dynamics of thin films of poly(4-chlorostyrene), a polymer whose molecular mobility is particularly sensitive to changes in the specific volume. Samples were obtained by spincoating, the technique most commonly used to prepare thin organic layers, which consists of pouring dilute polymer solutions onto a plate rotating at a high rate. Our experimental results demonstrate that filtering the solutions before spincoating affects the value of the segmental relaxation time of the as-prepared films. Thin polymer layers obtained via filtered solutions show accelerated segmental dynamics upon confinement at the nanoscale level, once below 100nm, while the samples obtained via unfiltered solutions exhibit bulk-like dynamics down to 15-20nm. We analyzed these results by means of the cooperative free volume rate model, considering a larger free volume content in thin films obtained via filtered solutions. The validity of the model predictions was finally verified by measurements of irreversible adsorption, confirming a larger adsorbed amount, corresponding to a higher specific volume, in the case of samples obtained via unfiltered solutions. Our results prove that filtering is a crucial step in the preparation of thin films, and it could be used to switch on and off nanoconfinement effects.

3.
ACS Macro Lett ; 8(1): 41-45, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-35619409

ABSTRACT

We show that the Cooperative Free Volume (CFV) rate model, successful at modeling pressure-dependent dynamics, can be employed to describe the temperature and thickness dependence of the segmental time of polymers confined in thin films (1D confinement). The CFV model is based on an activation free energy that increases with the number of cooperating segments, which is determined by the system's free volume. Here, we apply the CFV model to new experimental results on the segmental relaxation of 1D confined poly(4-chlorostyrene), P4ClS, and find remarkable agreement over the whole temperature and thickness ranges investigated. This work further validates the robustness of the CFV model, which relates the effects of confinement on dynamics to pressure changes in the bulk, and supports the idea that confinement effects originate from local perturbations in density.

SELECTION OF CITATIONS
SEARCH DETAIL
...