Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(24): e2309365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38268140

ABSTRACT

Miniaturized solid state capacitors leveraging migration of unipolar ions in a single polyelectrolyte layer sandwiched between metal electrodes, namely, polyelectrolyte capacitors (PECs), have been recently reported with areal capacitance up to 100-200 nF mm-2. Nonetheless, application of PECs in consumer and industrial electronics has been hindered so far by their small operational frequency range, up to a few kHz, due to the resistive behavior (phase angle >-45°) of PECs in the range kHz-to-MHz. Here, it is reported on multilayer polyelectrolyte capacitors (mPECs) that leverage as dielectric an ambipolar nanometer-thick (down to 10 nm) stack of anionic and cationic polyelectrolytes assembled layer-by-layer between metal electrodes to eliminate the resistive behavior at frequencies from kHz to MHz. This significantly extends the operational range of mPECs over PECs. mPECs with areal capacitance as high as 25 nF mm-2 at 20 Hz and full capacitive behavior from 100 mHz to 10 MHz are demonstrated using different assembling conditions and anionic/cationic polyelectrolyte pairs. The mPECs reliably operate over time for >300 million cycles, at different biasing voltages up to 3 V, and temperatures up to 80 °C, showing a reversible capacitive behavior without significant hysteresis. Application of mPECs in flexible electronics, also operating at high frequency, is envisaged.

2.
Adv Sci (Weinh) ; 9(22): e2202062, 2022 08.
Article in English | MEDLINE | ID: mdl-35618637

ABSTRACT

Here, the authors report on the manufacturing and in vivo assessment of a bioresorbable nanostructured pH sensor. The sensor consists of a micrometer-thick porous silica membrane conformably coated layer-by-layer with a nanometer-thick multilayer stack of two polyelectrolytes labeled with a pH-insensitive fluorophore. The sensor fluorescence changes linearly with the pH value in the range 4 to 7.5 upon swelling/shrinking of the polymer multilayer and enables performing real-time measurements of the pH level with high stability, reproducibility, and accuracy, over 100 h of continuous operation. In vivo studies carried out implanting the sensor in the subcutis on the back of mice confirm real-time monitoring of the local pH level through skin. Full degradation of the pH sensor occurs in one week from implant in the animal model, and its biocompatibility after 2 months is confirmed by histological and fluorescence analyses. The proposed approach can be extended to the detection of other (bio)markers in vivo by engineering the functionality of one (at least) of the polyelectrolytes with suitable receptors, thus paving the way to implantable bioresorbable chemical sensors.


Subject(s)
Absorbable Implants , Nanostructures , Animals , Hydrogen-Ion Concentration , Mice , Polyelectrolytes , Reproducibility of Results
3.
ACS Appl Mater Interfaces ; 11(46): 43731-43740, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31644268

ABSTRACT

Gold nanoparticle layers (AuNPLs) enable the coupling of morphological, optical, and electrical properties of gold nanoparticles (AuNPs) with tailored and specific surface topography, making them exploitable in many bioapplications (e.g., biosensing, drug delivery, and photothermal therapy). Herein, we report the formation of AuNPLs on porous silicon (PSi) interferometers and distributed Bragg reflectors (DBRs) for (bio)sensing applications via layer-by-layer (LbL) nanoassembling of a positively charged polyelectrolyte, namely, poly(allylamine hydrochloride) (PAH), and negatively charged citrate-capped AuNPs. Decoration of PSi interferometers with AuNPLs enhances the Fabry-Pérot fringe contrast due to increased surface reflectivity, resulting in an augmented sensitivity for both bulk and surface refractive index sensing, namely, about 4.5-fold using NaCl aqueous solutions to infiltrate the pores and 2.6-fold for unspecific bovine serum albumin (BSA) adsorption on the pore surface, respectively. Sensitivity enhancing, about 2.5-fold, is also confirmed for affinity and selective biosensing of streptavidin using a biotinylated polymer, namely, negatively charged poly(methacrylic acid) (b-PMAA). Further, decoration of PSi DBR with AuNPLs envisages building up a hybrid photonic/plasmonic optical sensing platform. Both photonic (DBR stop-band) and plasmonic (localized surface plasmon resonance, LSPR) peaks of the hybrid structure are sensitive to changes of bulk (using glucose aqueous solutions) and surface (due to BSA unspecific adsorption) refractive index. To the best of our knowledge, this is the first report about the formation of AuNPLs via LbL nanoassembly on PSi for (i) the enhancing of the interferometric performance in (bio)sensing applications and (ii) the building up of hybrid photonic/plasmonic platforms for sensing and perspective biosensing applications.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Serum Albumin, Bovine/analysis , Silicon/chemistry , Streptavidin/chemistry , Surface Plasmon Resonance , Interferometry , Porosity
4.
Nat Commun ; 9(1): 5256, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30531860

ABSTRACT

Nanostructured materials premise to revolutionize the label-free biosensing of analytes for clinical applications, leveraging the deeper interaction between materials and analytes with comparable size. However, when the characteristic dimension of the materials reduces to the nanoscale, the surface functionalization for the binding of bioreceptors becomes a complex issue that can affect the performance of label-free biosensors. Here we report on an effective and robust route for surface biofunctionalization of nanostructured materials based on the layer-by-layer (LbL) electrostatic nano-assembly of oppositely-charged polyelectrolytes, which are engineered with bioreceptors to enable label-free detection of target analytes. LbL biofunctionalization is demonstrated using nanostructured porous silicon (PSi) interferometers for affinity detection of streptavidin in saliva, through LbL nano-assembly of a bi-layer of positively-charged poly(allylamine hydrochloride) (PAH) and negatively-charged biotinylated poly(methacrylic acid) (b-PMAA). High sensitivity in streptavidin detection is achieved, with high selectivity and stability, down to a detection limit of 600 fM.

5.
Langmuir ; 31(20): 5633-44, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25919333

ABSTRACT

Porous aluminum oxide (PAO) is a nanoporous material used for various (bio)technological applications, and tailoring its surface properties via covalent modification is a way to expand and refine its application. Specific and complex chemical modification of the PAO surface requires a stepwise approach in which a secondary reaction on a stable initial modification is necessary to achieve the desired terminal molecular architecture and reactivity. We here show that the straightforward initial modification of the bare PAO surface with bromo-terminated phosphonic acid allows for the subsequent preparation of PAO with a wide scope of terminal reactive groups, making it suitable for (bio)functionalization. Starting from the initial bromo-terminated PAO, we prepared PAO surfaces presenting various terminal functional groups, such as azide, alkyne, alkene, thiol, isothiocyanate, and N-hydroxysuccinimide (NHS). We also show that this wide scope of easily accessible tailored reactive PAO surfaces can be used for subsequent modification with (bio)molecules, including carbohydrate derivatives and fluorescently labeled proteins.


Subject(s)
Aluminum Oxide/chemistry , Bromus/chemistry , Nanopores , Phosphoric Acids/chemistry , Cross-Linking Reagents/chemistry , Fluorescent Dyes/chemistry , Proteins/chemistry
6.
Langmuir ; 30(20): 5829-39, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24825533

ABSTRACT

A comparative study is presented of the hydrolytic and thermal stability of 24 different kinds of monolayers on Si(111), Si(100), SiC, SiN, SiO2, CrN, ITO, PAO, Au, and stainless steel surfaces. These surfaces were modified utilizing appropriate organic compounds having a constant alkyl chain length (C18), but with different surface-reactive groups, such as 1-octadecene, 1-octadecyne, 1-octadecyltrichlorosilane, 1-octadecanethiol, 1-octadecylamine and 1-octadecylphosphonic acid. The hydrolytic stability of obtained monolayers was systematically investigated in triplicate in constantly flowing aqueous media at room temperature in acidic (pH 3), basic (pH 11), phosphate buffer saline (PBS) and deionized water (neutral conditions), for a period of 1 day, 7 days, and 30 days, yielding 1152 data points for the hydrolytic stability. The hydrolytic stability was monitored by static contact angle measurements and X-ray photoelectron spectroscopy (XPS). The covalently bound alkyne monolayers on Si(111), Si(100), and SiC were shown to be among the most stable monolayers under acidic and neutral conditions. Additionally, the thermal stability of 14 different monolayers was studied in vacuum using XPS at elevated temperatures (25-600 °C). Similar to the hydrolytic stability, the covalently bound both alkyne and alkene monolayers on Si(111), Si(100) and SiC started to degrade from temperatures above 260 °C, whereas on oxide surfaces (e.g., PAO) phosphonate monolayers even displayed thermal stability up to ∼500 °C.


Subject(s)
Gold/chemistry , Hot Temperature , Hydrocarbons/chemistry , Silicon Compounds/chemistry , Hydrogen-Ion Concentration , Hydrolysis
7.
Soft Matter ; 10(19): 3441-50, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24647530

ABSTRACT

This paper studied the synthesis, characterization and use of the magnetic chitosan nanogel for carrying meleimidic compounds. The hydrogel polymer was prepared using O-carboxymethylchitosan, which was crosslinked with epichlorohydrin for subsequent incorporation of iron oxide magnetic nanoparticles. The characterization revealed that the magnetic material comprises about 10% of the hydrogel. This material is comprised of magnetite and maghemite and exhibits ferro-ferrimagnetic behavior. The average particle size is 4.2 nm. There was high incorporation efficiency of maleimides in the magnetic nanogel. The release was of sustained character and there was a greater release when an external magnetic field was applied. The mathematical model that best explained the process of drug release by the magnetic hydrogel was that of Peppas-Sahlin. The magnetic nanogel proved to be an excellent candidate for use in drug-delivery systems.


Subject(s)
Antineoplastic Agents/chemistry , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Adsorption , Animals , Antineoplastic Agents/metabolism , Calorimetry, Differential Scanning , Cattle , Chitosan/chemical synthesis , Chitosan/chemistry , Drug Carriers/chemical synthesis , Drug Liberation , Epichlorohydrin/chemistry , Magnetics , Magnetite Nanoparticles/chemistry , Nanogels , Particle Size , Serum Albumin, Bovine/chemistry , Spectroscopy, Mossbauer , Thermogravimetry
8.
Anal Chem ; 86(5): 2403-11, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24484216

ABSTRACT

A better characterization of nanometer-thick organic layers (monolayers) as used for engineering surface properties, biosensing, nanomedicine, and smart materials will widen their application. The aim of this study was to develop direct analysis in real time high-resolution mass spectrometry (DART-HRMS) into a new and complementary analytical tool for characterizing organic monolayers. To assess the scope and formulate general interpretation rules, DART-HRMS was used to analyze a diverse set of monolayers having different chemistries (amides, esters, amines, acids, alcohols, alkanes, ethers, thioethers, polymers, sugars) on five different substrates (Si, Si3N4, glass, Al2O3, Au). The substrate did not play a major role except in the case of gold, for which breaking of the weak Au-S bond that tethers the monolayer to the surface, was observed. For monolayers with stronger covalent interfacial bonds, fragmentation around terminal groups was found. For ester and amide-terminated monolayers, in situ hydrolysis during DART resulted in the detection of ions characteristic of the terminal groups (alcohol, amine, carboxylic acid). For ether and thioether-terminated layers, scission of C-O or C-S bonds also led to the release of the terminal part of the monolayer in a predictable manner. Only the spectra of alkane monolayers could not be interpreted. DART-HRMS allowed for the analysis of and distinction between monolayers containing biologically relevant mono or disaccharides. Overall, DART-HRMS is a promising surface analysis technique that combines detailed structural information on nanomaterials and ultrathin films with fast analyses under ambient conditions.


Subject(s)
Mass Spectrometry/methods , Organic Chemicals/analysis , Gold/chemistry
9.
Langmuir ; 30(5): 1311-20, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24471580

ABSTRACT

Porous aluminum oxide (PAO), a nanostructured support for, among others, culturing microorganisms, was chemically modified in order to attach biomolecules that can selectively interact with target bacteria. We present the first comprehensive study of monolayer-modified PAO using conditions that are relevant to microbial growth with a range of functional groups (carboxylic acid, α-hydroxycarboxylic acid, alkyne, alkene, phosphonic acid, and silane). Their stability was initially assessed in phosphate-buffered saline (pH 7.0) at room temperature. The most stable combination (PAO with phosphonic acids) was further studied over a range of physiological pHs (4-8) and temperatures (up to 80 °C). Varying the pH had no significant effect on the stability, but it gradually decreased with increasing temperature. The stability of phosphonic acid-modified PAO surfaces was shown to depend strongly on the other terminal group of the monolayer structure: in general, hydrophilic monolayers were less stable than hydrophobic monolayers. Finally, an alkyne-terminated PAO surface was reacted with an azide-linked mannose derivative. The resulting mannose-presenting PAO surface showed the clearly increased adherence of a mannose-binding bacterium, Lactobacillus plantarum, and also allowed for bacterial outgrowth.


Subject(s)
Aluminum Oxide/chemistry , Carboxylic Acids/chemistry , Models, Biological , Alkenes/chemistry , Alkynes/chemistry , Click Chemistry , Drug Stability , Phosphoric Acids/chemistry , Porosity , Silanes/chemistry , Surface Properties , Temperature
10.
Plant Physiol Biochem ; 70: 342-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23811777

ABSTRACT

The aim of this study was to individuate, by bioassay-guided fractionation, promising antifungal fractions and/or constituents from Hypericum perforatum subsp. angustifolium in vitro roots. Treatments with chitosan, O-carboxymethylchitosan (CMC) and its derivatives were used to improve xanthone production in the roots. The bioassay-guided fractionation of CMC-treated roots led to the individuation of an ethyl acetate fraction, containing the highest amount of xanthones (6.8%) and showing the best antifungal activity with minimal inhibitory concentration (MIC) values of 53.82, 14.18, and 36.52 µg/ml, against Candida spp., Cryptococcus neoformans and dermatophytes, respectively. From this fraction the prenylated xanthone, biyouxanthone D has been isolated and represented the 44.59% of all xanthones detected. For the first time in the present paper biyouxanthone D has been found in H. perforatum roots and tested against C. neoformans, dermatophytes, and Candida species. The xanthone showed the greatest antifungal activity against C. neoformans and dermatophytes, with MIC values of 20.16, 22.63 µg/ml. In conclusion, the results obtained in the present study demonstrated that CMC-treated Hpa in vitro root extracts represent a tool for the obtainment of promising candidates for further pharmacological and clinical studies.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Chitosan/analogs & derivatives , Cryptococcus neoformans/drug effects , Hypericum/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Xanthones/pharmacology , Antifungal Agents/isolation & purification , Chitosan/pharmacology , Humans , Hypericum/drug effects , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Roots/drug effects , Prenylation , Xanthones/isolation & purification
11.
Environ Sci Pollut Res Int ; 19(5): 1594-604, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22134860

ABSTRACT

PURPOSE: The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field. METHODS: Magnetic N-lauryl chitosan (L-Cht/γ-Fe(2)O(3)) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/γ-Fe(2)O(3). The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 2(3) factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle. RESULTS: The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir-Freundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267 mg g(-1). The material can be reused, but with a decrease in the amount of adsorbed dye. CONCLUSIONS: L-Cht/γ-Fe(2)O(3) is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Naphthalenesulfonates/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Chitosan/chemistry , Kinetics , Magnetic Phenomena , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Temperature , Textile Industry , Thermogravimetry
12.
Acta Biomater ; 7(8): 3078-85, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21601660

ABSTRACT

Magnetic N-benzyl-O-carboxymethylchitosan nanoparticles were synthesized through incorporation and in situ methods and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and magnetization measurements. Indomethacin was incorporated into the nanoparticles via the solvent evaporation method. The indomethacin-loaded magnetic nanoparticles were characterized by the same techniques, and also by transmission electron microscopy. The nanoparticles containing the polymer showed a drug loading efficiency of between 60.8% and 74.8%, and the magnetic properties were not significantly affected by incorporation of the drug. The in vitro drug release study was carried out in simulated body fluid, pH 7.4 at 37°C. The profiles showed an initial fast release, which became slower as time progressed. The percentage of drug released after 5 h was between 60% and 90%, and the best fitting mathematical model for drug release was the Korsmeyer-Peppas model, indicating a Fickian diffusion mechanism.


Subject(s)
Chitosan/analogs & derivatives , Indomethacin/pharmacology , Magnetics/methods , Nanoparticles/chemistry , Calorimetry, Differential Scanning , Chitosan/chemical synthesis , Chitosan/chemistry , Hydrogen-Ion Concentration/drug effects , Kinetics , Models, Chemical , Nanoparticles/ultrastructure , Particle Size , Spectroscopy, Fourier Transform Infrared
13.
Biomacromolecules ; 9(6): 1586-94, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18461995

ABSTRACT

The iron crosslinked chitosan (Ch-Fe-CL) and N-carboxylmethyl chitosan (N-CM-Ch-Fe) complexes were studied by complementary techniques: structurally sensitive Mössbauer and X-ray absorption methods, as well as static magnetic measurements. A detailed and consistent description of these complexes including, besides the overall magnetic behavior, the spin ordering and local atomic structure around Fe ions is presented. Fe atoms in the investigated samples are mostly penta-coordinated and appear in a high spin Fe (3+) ionic state. In Ch-Fe-CL, two kinds of Fe near neighbors are equally probable and several Fe atoms are situated in the second coordination sphere. The magnetic interactions between these Fe ions lead to a sperimagnetic-like ordering. In N-CM-Ch-Fe, only one Fe neighborhood was found. Other Fe atoms were identified neither in the first nor in the second coordination sphere, but the third coordination sphere indicates the presence of Fe atoms. The magnetic coupling between these atoms is antiferromagnetic, but the dominant part of Fe in this sample remains in a paramagnetic state.


Subject(s)
Chitosan/chemistry , Ferric Compounds/chemistry , Iron/chemistry , Magnetics , Molecular Structure , Spectroscopy, Mossbauer , Spectrum Analysis , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...