Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 93(23): 12791-8, 1996 Nov 12.
Article in English | MEDLINE | ID: mdl-8917498

ABSTRACT

We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme ("green CPO") displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22 degrees C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = 1/2 ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this "quasi-native CPO," which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.


Subject(s)
Allyl Compounds/pharmacology , Benzene Derivatives/pharmacology , Chloride Peroxidase/antagonists & inhibitors , Chloride Peroxidase/chemistry , Chloride Peroxidase/isolation & purification , Electron Spin Resonance Spectroscopy , Enzyme Inhibitors/pharmacology , Hydrogen Peroxide/pharmacology , Mitosporic Fungi/enzymology , Porphyrins , Spectroscopy, Mossbauer
2.
Photochem Photobiol ; 64(3): 552-63, 1996 Sep.
Article in English | MEDLINE | ID: mdl-8806231

ABSTRACT

The photosystem II (PSII) reaction center in higher plants is susceptible to photoinhibitory molecular damage of its component pigments and proteins upon prolonged exposure to excess light in air. Higher plants have a limited capacity to avoid such damage through dissipation, as heat, of excess absorbed light energy in the PSII light-harvesting antenna. The most important photoprotective heat dissipation mechanism, induced under excess light conditions, includes a concerted effect of the trans-thylakoid pH gradient (delta pH) and the carotenoid pigment interconversions of the xanthophyll cycle. Coincidentally, both the photoprotective mechanism and photoinhibitory PSII damage decrease the PSII chlorophyll a (Chl a) fluorescence yield. In this paper we present a comparative fluorescence lifetime analysis of the xanthophyll cycle- and photoinhibition-dependent changes in PSII Chl a fluorescence. We analyze multifrequency phase and modulation data using both multicomponent exponential and bimodal Lorentzian fluorescence lifetime distribution models; further, the lifetime data were obtained in parallel with the steady-state fluorescence intensity. The photoinhibition was characterized by a progressive decrease in the center of the main fluorescence lifetime distribution from approximately 2 ns to approximately 0.5 ns after 90 min of high light exposure. The damaging effects were consistent with an increased nonradiative decay path for the charge-separated state of the PSII reaction center. In contrast, the delta pH and xanthophyll cycle had concerted minor and major effects, respectively, on the PSII fluorescence lifetimes and intensity (Gilmore et al., 1996, Photosynth. Res., in press). The minor change decreased both the width and lifetime center of the longest lifetime distribution; we suggest that this change is associated with the delta pH-induced activation step, needed for binding of the deepoxidized xanthophyll cycle pigments. The major change increased the fractional intensity of a short lifetime distribution at the expense of a longer lifetime distribution; we suggest that this change is related to the concentration-dependent binding of the deepoxidized xanthophylls in the PSII inner antenna. Further, both the photoinhibition and xanthophyll cycle mechanisms had different effects on the relationship between the fluorescence lifetimes and intensity. The observed differences between the xanthophyll cycle and photoinhibition mechanisms confirm and extend our current basic model of PSII exciton dynamics, structure and function.


Subject(s)
Chlorophyll/radiation effects , Photosynthetic Reaction Center Complex Proteins/radiation effects , Chlorophyll/chemistry , Chlorophyll A , Fluorescence , Light-Harvesting Protein Complexes , Lutein/chemistry , Lutein/radiation effects , Photochemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosystem II Protein Complex
3.
Photosynth Res ; 48(1-2): 171-87, 1996 May.
Article in English | MEDLINE | ID: mdl-24271297

ABSTRACT

Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (ΔpH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a ΔpH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4-0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273-2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant ΔpH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The ΔpH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and ΔpH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.

4.
Biochem Biophys Res Commun ; 187(2): 570-6, 1992 Sep 16.
Article in English | MEDLINE | ID: mdl-1326950

ABSTRACT

Hemoglobin (Hb) isolated from the backswimmer Buenoa margaritacea has been analyzed spectroscopically. The met form at pH less than 6 shows a 30nm red shift in the Qv and Qo bands and a 5nm red shift in the Soret band compared to mammalian Hb, while only minor differences are seen in the spectra of the CO and O2 adducts of Hb from Buenoa and mammals. EPR spectra of the metHb show a superposition of signals; at low pH they are mainly of axial high-spin character, while at high pH a low-spin signal predominates with an O-type g-tensor (2.54, 2.61, 1.85) comparable to that of hydroxy myoglobin. Infrared spectra of Hb12C-16O at pH 8.2 reveal two major absorption bands at 1934 cm-1 and 1967 cm-1, which shift to 1892 cm-1 and 1923 cm-1, respectively, for Hb12C-18O. As isolated the Buenoa Hb consists of several isozymes, all of which have a histidine as the proximal ligand of the heme iron.


Subject(s)
Hemiptera/chemistry , Hemoglobins/chemistry , Spectrum Analysis , Animals , Electron Spin Resonance Spectroscopy , Hemoglobins/isolation & purification , Histidine/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet
5.
Biochim Biophys Acta ; 1122(3): 293-8, 1992 Aug 21.
Article in English | MEDLINE | ID: mdl-1504090

ABSTRACT

A recent report from this laboratory (Zhang, J.-H., Kurtz, D.M., Jr., Xia, Y.-M. and Debrunner, P.G. (1991) Biochemistry 30, 583-589) described a procedure for reconstitution of a functional di-iron site in the octameric, non-heme iron O2-carrying protein, hemerythrin by addition of ferrous salts to apoprotein, followed by slow dilution of the denaturant. Although the resulting protein contained its full complement of iron, i.e., 2 Fe per subunit, about 30% of the iron was found to remain ferrous under ambient O2, i.e., this iron was incapable of forming an O2 adduct. In this report a method is described for obtaining essentially fully functional hemerythrin by passage of the freshly reconstituted protein through an [oxy/30% non-functional----met----deoxy----oxy redox cycle. UV/vis absorption and 57Fe Mössbauer spectroscopies show that little or no non-functional iron remains in the reconstituted oxyhemerythrin after the redox cycle. Quantitations of protein and diiron sites show that, during the first step of the redox cycle, the non-functional iron is converted to a form that is spectroscopically indistinguishable from that of native methemerythrin. Far-UV circular dichroism shows that the secondary structure of this reconstituted methemerythrin is essentially identical to that of native protein. Non-denaturing polyacrylamide gel electrophoresis shows that the size and charge of the native and reconstituted proteins before and after redox cycling are essentially identical. These results indicate that the non-functional iron is converted to a functional form by the redox cycling, and that the key step in this conversion is the [oxy/30% non-functional]----met transformation.


Subject(s)
Hemerythrin/chemistry , Iron/chemistry , Hemerythrin/analogs & derivatives , Hemerythrin/isolation & purification , Marine Biology , Oxidation-Reduction , Spectrophotometry/methods
6.
J Biol Chem ; 267(1): 261-9, 1992 Jan 05.
Article in English | MEDLINE | ID: mdl-1309736

ABSTRACT

Electron nuclear double resonance (ENDOR) spectroscopy is used to probe the coordination of the mixed valence (Fe(II).Fe(III)) diiron cluster of the methane monooxygenase hydroxylase component (MMOH-) isolated from Methylosinus trichosporium OB3b. ENDOR resonances are observed along the principal axis directions g1 = 1.94 and g3 = 1.76 from at least nine different protons and two different nitrogens. The nitrogens are strongly coupled and appear to be directly coordinated to the cluster irons. The ratio of their superhyperfine coupling constants is roughly 4:7, which equals the ratio of the spin expectation values of the Fe(II) and Fe(III) in the ground state and suggests that at least one nitrogen is coordinated to each iron of the mixed valence cluster. Moreover, the superhyperfine and quadrupole coupling constants assigned to the Fe(III) site (AN = 13.6 MHz, PN = 0.7 MHz) are comparable with those observed for semimethemerythrin sulfide (AN = 12.1 MHz, PN = 0.7 MHz), for which the nitrogen ligands are histidines. At least three of the coupled protons exchange slowly when MMOH- is incubated in D2O, and 2H ENDOR resonances are subsequently observed. These observations are also consistent with histidine ligation of the iron cluster. On addition of the inhibitor dimethyl sulfoxide (Me2SO) to MMOH- the EPR spectrum sharpens and shifts dramatically. Only one set of 14N ENDOR resonances is observed with frequencies equal to those assigned to the Fe(III)-histidine resonances of uncomplexed MMOH- suggesting that the nitrogen coordination to the Fe(II) site is altered or possibly lost in the presence of Me2SO. 2H ENDOR resonances are observed in the presence of d6-Me2SO indicating that the inhibitor Me2SO binds near or possibly to the diiron cluster. In contrast, no 2H ENDOR resonances are observed from d4-methanol upon addition to MMOH-. Thus, the changes observed in the EPR spectrum of MMOH- upon addition of methanol may result from binding to a site away from the diiron cluster or from bulk solvent effects on the protein structure.


Subject(s)
Iron/metabolism , Mixed Function Oxygenases/metabolism , Oxygenases/metabolism , Electron Spin Resonance Spectroscopy , Methylococcaceae/enzymology
7.
Biochemistry ; 30(2): 583-9, 1991 Jan 15.
Article in English | MEDLINE | ID: mdl-1988045

ABSTRACT

The first reconstitutions of functional diiron sites in the nonheme O2-carrying proteins hemerythrin (Hr) and myohemerythrin (myoHr) have been achieved. Both proteins are reconstituted under anaerobic conditions, and the procedure consists of (i) denaturation of the native met form with 6 M guanidinium chloride in the presence of sodium dithionite and 2,2'-dipyridyl, (ii) separation of the apoprotein from the other reagents and products, (iii) addition of an iron(II) stock solution to the apoprotein in the presence of 2-mercaptoethanol, and (iv) several cycles of slow dilution and reconcentration by ultrafiltration to remove excess reagents. Iron analyses indicate that the apoproteins have been essentially completely freed of iron and that reconstituted Hr contains its full complement of iron, i.e., approximately 2 Fe/subunit. Ferrous rather than ferric iron appears to be necessary for recovery of the native structures for both myoHr and Hr. In the case of Hr, reconstitution was successful only when iron(II) was added to apoHr prior to removal of denaturant. ApoHr is essentially insoluble at pH 7 in the absence of denaturants but remains soluble when denaturant is removed in the presence of ferrous iron, which leads to recovery of the octameric structure containing all of its diiron sites. Iron(II) apparently stabilizes the native or a nearly native structure during reconstitution. OxymyoHr and oxyHr are the major initial products of reconstitution. The yield of oxymyoHr from apomyoHr was approximately 87%. In contrast to reconstituted oxymyoHr, where essentially all of the iron appears to be functional, approximately 30% of the diiron sites in the reconstituted oxyHr are unable to bind O2 at ambient p(O2).(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Hemerythrin/analogs & derivatives , Hemerythrin/ultrastructure , Iron , Animals , Apoproteins , In Vitro Techniques , Invertebrates , Spectrophotometry, Ultraviolet , Spectrum Analysis
8.
Photosynth Res ; 26(3): 223-8, 1990 Dec.
Article in English | MEDLINE | ID: mdl-24420587

ABSTRACT

A method is described for the isolation and purification of active oxygen-evolving photosystem II (PS II) membranes from the green alga Chlamydomonas reinhardtii. The isolation procedure is a modification of methods evolved for spinach (Berthold et al. 1981). The purity and integrity of the PS II preparations have been assesssed on the bases of the polypeptide pattern in SDS-PAGE, the rate of oxygen evolution, the EPR multiline signal of the S2 state, the room temperature chlorophyll a fluorescence yield, the 77 K emission spectra, and the P700 EPR signal at 300 K. These data show that the PS II characteristics are increased by a factor of two in PS II preparations as compared to thylakoid samples, and the PS I concentration is reduced by approximately a factor ten compared to that in thylakoids.

9.
Biophys J ; 56(3): 489-506, 1989 Sep.
Article in English | MEDLINE | ID: mdl-2551404

ABSTRACT

A quantitative interpretation is presented for EPR spectra from integer-spin metal centers having large zero-field splittings. Integer-spin, or non-Kramers, centers are common in metalloproteins and many give EPR signals, but a quantitative understanding has been lacking until now. Heterogeneity of the metal's local environment will result in a significant spread in zero-field splittings and in broadened EPR signals. Using the spin Hamiltonian Hs = S.D.S + beta S.g.B and some simple assumptions about the nature of the zero-field parameter distributions, a lineshape model was devised which allows accurate simulation of single crystal and frozen solution spectra. The model was tested on single crystals of magnetically dilute ferrous fluosilicate. Data and analyses from proteins and active-site models are presented with the microwave field B1 either parallel or perpendicular to B. Quantitative agreement of observed and predicted signal intensities is found for the two B1 orientations. Methods of spin quantitation are given and are shown to predict an unknown concentration relative to a standard with known concentration. The fact that the standard may be either a non-Kramers or a Kramers center is further proof of the model's validity. The magnitude of the splitting in zero magnetic field is of critical importance; it affects not only the chance of signal observation, but also the quantitation accuracy. Experiments taken at microwave frequencies of 9 and 35 GHz demonstrate the need for high-frequency data as only a fraction of the molecules give signals at 9 GHz.


Subject(s)
Iron/analysis , Metalloproteins/analysis , Binding Sites , Carbon Monoxide/analysis , Crystallization , Edetic Acid/analysis , Electron Spin Resonance Spectroscopy , Electron Transport Complex IV/analysis , Heme/analysis , Magnetics , Models, Biological , Myoglobin/analysis , Protein Conformation , Temperature
10.
J Biol Chem ; 263(30): 15260-3, 1988 Oct 25.
Article in English | MEDLINE | ID: mdl-2844807

ABSTRACT

Mössbauer spectra of 57Fe-enriched NADH-reduced yeast cytochrome c oxidase reveal two quadrupole doublets of unequal intensity; one (approximately 33%) is typical of high-spin ferrous heme with histidine coordination and is assigned to heme a3, while the other (approximately 67%) is typical of low-spin heme with two nitrogeneous axial ligands as expected from heme a. The excess intensity (approximately 17%) of the low-spin doublet must therefore be assigned to heme a3 in a modified environment. The Mössbauer spectra of the same sample exposed to CO show that 50% of the heme iron forms a CO adduct, consistent with heme a3 being inhibited by CO. While low-spin hem a has the same Mössbauer parameters as in the reduced sample, its intensity has dropped to 35%. A distinctly new high-spin species (approximately 15%) is observed and assigned to heme a in a modified environment. The comparable size of the unexpected high-spin heme a fraction in the CO adduct and the low-spin heme a3 fraction in the reduced enzyme suggest that they arise from the same material. This material is likely to be the inactive fraction that has been found in all preparations of resting yeast cytochrome c oxidase (Siedow, J.N., Miller, S., and Palmer, G. (1981) J. Bioenerg. Biomembr. 14, 171-179). The kinetics of CO recombination following photolysis of the CO complex further confirms the coexistence of two distinct fractions associated with active and inactive protein. The majority (approximately 74%), presumably active protein, recombines exponentially from 160 to 270 K following an Arrhenius law. The large activation enthalpy, delta H approximately 35 kJ/mol, is comparable to that found in the beef heart enzyme, suggesting that the flashed-off CO is bound by the nearby CuB as in the mammalian system (Fiamingo, F.G., Altschuld, R.A., Moh, P.P., and Alben, J.O. (1982) J. Biol. Chem. 250, 1639-1650). In the minority, presumably inactive, fraction the CO recombination has fast nonexponential kinetics with a distribution of activation enthalpies peaking near delta Hp = 13 kJ/mol reminiscent of CO binding to myoglobin. In this inactive fraction CuB is apparently not accessible to the flashed-off CO.


Subject(s)
Carbon Monoxide/metabolism , Electron Transport Complex IV/metabolism , Saccharomyces cerevisiae/enzymology , Algorithms , Photolysis , Spectroscopy, Mossbauer , Temperature
11.
Biochemistry ; 27(3): 1014-24, 1988 Feb 09.
Article in English | MEDLINE | ID: mdl-3365363

ABSTRACT

Nitric oxide forms adducts with the binuclear iron site of hemerythrin (Hr) at [Fe(II),Fe(II)]deoxy and [Fe(II),Fe(III)]semimet oxidation levels. With deoxyHr our results establish that (i) NO binds reversibly, forming a complex which we label deoxyHrNO, (ii) NO forms a similar but distinct complex in the presence of fluoride, which we label deoxyHrFNO, (iii) NO is directly coordinated to one iron atom of the binuclear pair in these adducts, most likely in a bent end-on fashion, and (iv) the iron atoms in the binuclear sites of both deoxyHrNO and deoxyHrFNO are antiferromagnetically coupled, thereby generating unique electron paramagnetic resonance (EPR) detectable species. The novel EPR signal of deoxyHrNO (deoxyHrFNO) with g[[ = 2.77 (2.58) and g = 1.84 (1.80) is explained by the magnetic interaction of the Fe(II) (S' = 2) and [FeNO]7 (S = 3/2) centers observed by Mössbauer spectroscopy. Antiferromagnetic coupling leads to a ground state of Seff = 1/2. Analysis of the EPR parameters using the isotropic spin-exchange Hamiltonian, Hex = 2JS3/2.S2, and including zero-field splitting leads to a coupling constant, -J approximately 23 cm-1, for deoxyHrNO. The resonance Raman spectrum of deoxyHrNO shows features at 433 and 421 cm-1 that shift downward with 15N16O and that are assigned to stretching and bending modes, respectively, of the [FeNO]7 unit. Sensitivity of the bending mode to D2O suggests that bound NO participates in hydrogen bonding. We propose that the terminal oxygen atom of NO is hydrogen bonded to the proton of the mu-hydroxo bridge in the Fe-(OH)-Fe unit. A bent Fe-N-O geometry is supported by spectroscopic and structural comparisons to synthetic complexes and is consistent with a limiting [FeII,FeIIINO-] formulation for deoxyHrNO. Reversibility of NO binding to deoxyHr is demonstrated by bleaching of the optical and EPR spectra of deoxyHrNO upon additions of excess N3- or CNO-. DeoxyHrNO undergoes autoxidation under anaerobic conditions over the course of several hours. The product of this autoxidation appears to be an EPR-silent NO adduct of semimetHr. The formal one-electron oxidations of the binuclear iron site of deoxyHr by NO and by HNO2 can conceivably occur with no net change in charge on the iron site. In contrast, autoxidation of oxy- to metHr requires a change in net charge on the iron site, which may provide a kinetic barrier.


Subject(s)
Hemerythrin/metabolism , Metalloproteins/metabolism , Nitric Oxide/metabolism , Animals , Binding Sites , Iron/metabolism , Kinetics , Nematoda/metabolism , Oxidation-Reduction , Protein Binding , Spectrum Analysis , Spectrum Analysis, Raman , Thermodynamics
12.
J Biol Chem ; 261(24): 11015-20, 1986 Aug 25.
Article in English | MEDLINE | ID: mdl-3015951

ABSTRACT

The interaction of phosphate with reduced uteroferrin has been re-examined in light of disagreements on the oxidation state of the binuclear iron cluster (Keough, D. T., Beck, J. L., de Jersey, J., and Zerner, B. (1982) Biochem. Biophys. Res. Commun. 108, 1643-1648; Antanaitis, B. C., and Aisen, P. (1985) J. Biol. Chem. 260, 751-756). Our results based on Mossbauer observations and the kinetics of spectral change and activity loss show clearly that phosphate binds to reduced uteroferrin to form a reduced uteroferrin-phosphate complex. This complex exhibits a pair of quadrupole doublets at 119 K with parameters typical of a high spin ferric and a high spin ferrous center, respectively, but distinct from those of the native reduced enzyme. The reduced phosphate complex exhibits a pH-dependent visible absorption maximum ranging from 530 to 561 nm. In air, the reduced phosphate complex converts to the oxidized phosphate complex with a first order rate constant of 4 X 10(-3) min-1, as monitored by spectral changes and loss of enzyme activity.


Subject(s)
Metalloproteins/metabolism , Phosphates/metabolism , Acid Phosphatase , Arsenates/pharmacology , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Isoenzymes , Kinetics , Oxidation-Reduction , Spectrophotometry , Tartrate-Resistant Acid Phosphatase
13.
Biochemistry ; 23(26): 6809-16, 1984 Dec 18.
Article in English | MEDLINE | ID: mdl-6099143

ABSTRACT

The green primary compound of chloroperoxidase was prepared by freeze-quenching the enzyme after rapid mixing with a 5-fold excess of peracetic acid. The electron paramagnetic resonance (EPR) spectra of these preparations consisted of at least three distinct signals that could be assigned to native enzyme, a free radical, and the green compound I as reported earlier. The absorption spectrum of compound I was obtained through subtraction of EPR signals measured under passage conditions. The signal is well approximated by an effective spin Seff = 1/2 model with g = 1.64, 1.73, 2.00 and a highly anisotropic line width. Mössbauer difference spectra of compound I samples minus native enzyme showed well-resolved magnetic splitting at 4.2 K, an isomer shift delta Fe = 0.15 mm/s, and quadrupole splitting delta EQ = 1.02 mm/s. All data are consistent with the model of an exchange-coupled spin S = 1 ferryl iron and a spin S' = 1/2 porphyrin radical. As a result of the large zero field splitting, D, of the ferryl iron and of intermediate antiferromagnetic exchange, S.J.S'.J approximately 1.02 D, the system consists of three Kramers doublets that are widely separated in energy. The model relates the EPR and Mössbauer spectra of the ground doublet to the intrinsic parameters of the ferryl iron, D/k = 52 K, E/D congruent to 0.035, and A perpendicular (gn beta n) = 20 T, and the porphyrin radical.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Chloride Peroxidase , Peroxidases , Electron Spin Resonance Spectroscopy , Fungi/enzymology , Spectrum Analysis
14.
Biochim Biophys Acta ; 791(2): 244-51, 1984 Dec 07.
Article in English | MEDLINE | ID: mdl-6509067

ABSTRACT

We measured Mössbauer spectra of human oxyhemoglobin, its isolated beta chains, and of oxymyoglobin from horse and sperm whale in fields of 4 or 6 T between 4.2 and 200 K in order to characterize the electronic state of the oxyheme complex. Diamagnetic sodium nitroprusside measured under the same conditions served as a control. The spectra of all compounds are reproduced adequately by a model that assumes a diagmagnetic iron and treats the quadrupole splitting, the asymmetry parameter and the Mössbauer linewidth as adjustable parameters. The results provide no indication in the oxyhemeproteins of the excited triplet state that was postulated by Cerdonio and co-workers (Cerdonio, M., Congiu-Castellano, A., Mogno, F., Pispisa, B., Romani, G.L. and Vitale, S. (1977) Proc. Natl. Acad. Sci. USA 74, 398-400) on the basis of susceptibility measurements on oxyhemoglobin.


Subject(s)
Myoglobin , Oxyhemoglobins , Spectrometry, Gamma , Humans , Temperature
15.
Biochemistry ; 23(20): 4743-54, 1984 Sep 25.
Article in English | MEDLINE | ID: mdl-6093863

ABSTRACT

We report Mössbauer and EPR measurements on horseradish peroxidase in the native state and the reaction intermediates with peroxide and chlorite. A detailed analysis of the electronic state of the heme iron is given, and comparisons are drawn with related systems. The native enzyme is high-spin ferric and thus has three Kramers doublets. The unusual magnetic properties of the ground doublet and the large energy of the second, (E2-E1)/k approximately equal to 41 K, and third doublet, (E3-E1)/k greater than or equal to 170 K, can be modeled with a quartet admixture of approximately 11% to the spin sextet. All evidence suggests a ferryl, OFeIV, state of the heme iron in compounds I and II and related complexes. The small isomer shift, delta Fe approximately equal to 0.06 mm/s, the (positive) quadrupole splitting, delta EQ approximately equal to 1.4 mm/s, the spin S = 1, and the large positive zero field splitting, D/k approximately equal to 35 K, are all characteristic of the ferryl state. In the green compound I the iron weakly couples to a porphyrin radical with spin S' = 1/2. A phenomenological model with a weak exchange interaction S . J . S', magnitude of less than or equal to 0.1 D, reproduces all Mössbauer and EPR data of compound I, but the structural origin of the exchange and its apparent distribution require further study. Reaction of horseradish peroxidase with chlorite leads to compound X with delta Fe = 0.07 mm/s and delta EQ = 1.53 mm/s, values that are closest to those of compound II. The diamagnetism of compound III and its Mössbauer parameters delta Fe = 0.23 mm/s and delta EQ = -2.31 mm/s at 4.2 K clearly identify it as an oxyheme adduct.


Subject(s)
Horseradish Peroxidase/metabolism , Peroxidases/metabolism , Electron Spin Resonance Spectroscopy/methods , Hydrogen Peroxide , Models, Biological , Oxidation-Reduction , Protein Conformation , Protoporphyrins , Spectrum Analysis/methods , Thermodynamics
16.
J Biol Chem ; 258(23): 14284-93, 1983 Dec 10.
Article in English | MEDLINE | ID: mdl-6315725

ABSTRACT

Native Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase contains a [4Fe-4S] cluster in the diamagnetic (+2) state. The cluster is essential for catalytic function, even though amidotransferase does not catalyze a redox reaction. The ability of the Fe-S cluster to undergo oxidation and reduction reactions and the consequences of changes in the redox state of the cluster for enzyme activity were studied. Treatment of the enzyme with oxidants resulted in either no reaction or complete dissolution of the Fe-S cluster and loss of activity. A stable +3 oxidation state was not detected. A small amount of paramagnetic species, probably an oxidized 3Fe cluster, was formed transiently during oxidation. The native cluster was poorly reduced by dithionite, but it could be readily reduced to the +1 state by photoreduction with 5-deazaflavin and oxalate. The reduced enzyme did not display an EPR spectrum typical of [4Fe-4S] ferredoxins in the +1 state, unless it was prepared under denaturing conditions. Mössbauer spectroscopy of reduced 57Fe-enriched amidotransferase confirmed that the cluster was in the +1 state, but the magnetic properties of the reduced cluster observed at 4.2 K indicated that it is characterized by a ground state spin S greater than or equal to 3/2. The midpoint potential of the +1/+2 couple was too low to measure accurately by conventional techniques, but it was below -600 mV, which is 100 mV more negative than reported for [4Fe-4S] clusters in bacterial ferredoxins. Fully reduced amidotransferase had about 40% of the activity of the native enzyme in glutamine-dependent phosphoribosylamine formation. The fact that both the +1 and +2 forms of the enzyme are active indicates that the cluster does not function as a site of reversible electron transfer during catalysis.


Subject(s)
Amidophosphoribosyltransferase/metabolism , Bacillus subtilis/enzymology , Iron-Sulfur Proteins/metabolism , Metalloproteins/metabolism , Pentosyltransferases/metabolism , Electron Spin Resonance Spectroscopy , Flavins/metabolism , Oxidation-Reduction , Photochemistry
17.
Biochemistry ; 22(20): 4769-74, 1983 Sep 27.
Article in English | MEDLINE | ID: mdl-6313048

ABSTRACT

The electron paramagnetic resonance (EPR) and Mössbauer properties of native horseradish peroxidase have been compared with those of a synthetic derivative of the enzyme in which a mesohemin residue replaces the natural iron protoporphyrin IX heme prosthetic group. The oxyferryl pi cation radical intermediate, compound I, has been formed from both the native and synthetic enzyme, and the magnetic properties of both intermediates have been examined. The optical absorption characteristics of compound I prepared from mesoheme-substituted horseradish peroxidase are different from those of the compound I prepared from native enzyme [DiNello, R. K., & Dolphin, D. (1981) J. Biol. Chem. 256, 6903-6912]. By analogy to model-compound studies, it has been suggested that these optical absorption differences are due to the formation of an A2u and an A1u pi cation radical species, respectively. However, the EPR and Mössbauer properties of the native and synthetic enzyme and of their oxidized intermediates are quite similar, if not identical, and the data favor an A2u radical for both compounds I.


Subject(s)
Horseradish Peroxidase/metabolism , Peroxidases/metabolism , Porphyrins/metabolism , Cations , Electron Spin Resonance Spectroscopy , Kinetics , Magnetic Resonance Spectroscopy , Spectrophotometry , Spectrum Analysis
18.
Science ; 220(4603): 1266, 1983 Jun 17.
Article in English | MEDLINE | ID: mdl-17769363
19.
Biochim Biophys Acta ; 745(1): 103-6, 1983 May 30.
Article in English | MEDLINE | ID: mdl-6303429

ABSTRACT

Mössbauer spectra have been determined on 57Fe-enriched samples of both pink (reduced) and purple (oxidized) forms of pig allantoic acid phosphatase (EC 3.1.3.2), and EPR spectra on corresponding unenriched samples. The spectra show unambiguously that both forms of the enzyme contain two distinct, antiferromagnetically coupled, high-spin iron atoms: a ferrous-ferric ion pair in the pink, reduced form, and a pair of ferric ions in the purple, oxidized form.


Subject(s)
Acid Phosphatase/isolation & purification , Allantois/enzymology , Extraembryonic Membranes/enzymology , Iron/isolation & purification , Animals , Chemical Phenomena , Chemistry , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Spectrum Analysis/methods , Swine
20.
J Biol Chem ; 258(4): 2115-7, 1983 Feb 25.
Article in English | MEDLINE | ID: mdl-6296130

ABSTRACT

Conclusive evidence is presented for an S = 1/2 spincoupled pair of high spin ferric and ferrous ions in the major reaction product of sulfide with the met form of the non-heme iron oxygen-carrying protein hemerythrin. Evidence for an analogous selenide derivative is also reported. Mössbauer and EPR spectroscopy establish (a) the charge and spin states of the individual iron atoms in sulfidehemerythrin as Fe(III), S = 5/2, and Fe(II), S = 2, and (b) the existence of an antiferromagnetic exchange interaction that couples the two spins to a resultant spin S = 1/2. The combined Mössbauer and EPR data confirm the correctness of the formulation first proposed for semi-methemerythrin by Harrington, P.C., de Waal, D.J.A., and Wilkins, R.G. ((1978) Arch. Biochem. Biophys. 191, 444-451) and furthermore show that a majority of the iron centers in the protein can be stabilized at this oxidation level. The results also demonstrate a new route to semi-methemerythrin. A titration of methemerythrin with selenide indicates that this derivative forms by a two step process consisting of first, reduction to the semi-met oxidation level by selenide and second, binding of selenide to either one or both irons.


Subject(s)
Chalcone/metabolism , Hemerythrin/metabolism , Metalloproteins/metabolism , Propiophenones/metabolism , Animals , Chalcone/analogs & derivatives , Crystallization , Electron Spin Resonance Spectroscopy , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...