Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 9(50): 29173-29181, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-35528416

ABSTRACT

Plasmon coupling and hybridization in 2D materials plays a significant role for controlling light-matter interaction at the nanoscale. We present a near-field radiation heat transfer (NFRHT) between vertically separated graphene and black phosphorene sheets at different temperatures in nanoscale separations. Radiation exchange from the theory of fluctuation electrodynamics is modulated by the carrier density of graphene and phosphorene. Direct comparison of NFRHT black phosphorene-graphene to symmetric graphene-graphene radiation exchange can be as much as 4 times higher for the selected doping range in both armchair (AC) and zigzag (ZZ) orientations of BP. The strong NFRHT enhancement of the specific optical properties of the heterogenous 2D material is due to the strong coupling of propagating surface plasmon polaritons as demonstrated by the distribution of the heat transfer coefficient. We also demonstrate that the magnitude of the near-field radiation enhancement is found to acutely depend on the vacuum gap of the graphene and BP pair. Interestingly, for separation distances below 200 nm, the total near-field heat transfer between black phosphorene and graphene exceeds that between graphene and graphene by 5 times. The radiation enhancement can be further tuned based on the orientation, AC, and ZZ of black phosphorene. These results prominently enable dynamic control of the total NFRHT relying on tunable anisotropic characteristics of BP irrespective of graphene's optical conductivity. Furthermore, the heterogeneous pairs of 2D materials potentially provide alternative platforms to achieve beyond super-Planckian radiation.

2.
Nanomaterials (Basel) ; 8(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304809

ABSTRACT

We propose and report on the design of a 1-D metallo-dielectric nano-grating on a GaAs substrate. We numerically study the impact of grating period, slit and wire widths, and irradiating angle of incidence on the optical response. The optimal wire width, w = 160 nm, was chosen based on previous results from investigations into the influence of wire width and nano-slit dimensions on optical and electrical enhancements in metal-semiconductor-metal photodetectors. In this present project, resonant absorption and reflection modes were observed while varying the wire and nano-slit widths to study the unique optical modes generated by Rayleigh-Wood anomalies and surface plasmon polaritons. We observed sharp and diffuse changes in optical response to these anomalies, which may potentially be useful in applications such as photo-sensing and photodetectors. Additionally, we found that varying the slit width produced sharper, more intense anomalies in the optical spectrum than varying the wire width.

3.
Materials (Basel) ; 11(6)2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29867013

ABSTRACT

This work studies the effect of a plasmonic array structure coupled with thin film oxide substrate layers on optical surface enhancement using a finite element method. Previous results have shown that as the nanowire spacing increases in the sub-100 nm range, enhancement decreases; however, this work improves upon previous results by extending the range above 100 nm. It also averages optical enhancement across the entire device surface rather than localized regions, which gives a more practical estimate of the sensor response. A significant finding is that in higher ranges, optical enhancement does not always decrease but instead has additional plasmonic modes at greater nanowire and spacing dimensions resonant with the period of the structure and the incident light wavelength, making it possible to optimize enhancement in more accessibly fabricated nanowire array structures. This work also studies surface enhancement to optimize the geometries of plasmonic wires and oxide substrate thickness. Periodic oscillations of surface enhancement are observed at specific oxide thicknesses. These results will help improve future research by providing optimized geometries for SERS molecular sensors.

4.
Sci Rep ; 8(1): 3224, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459663

ABSTRACT

We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.

5.
PLoS One ; 12(5): e0177463, 2017.
Article in English | MEDLINE | ID: mdl-28486554

ABSTRACT

Metallic, especially gold, nanostructures exhibit plasmonic behavior in the visible to near-infrared light range. In this study, we investigate optical enhancement and absorption of gold nanobars with different thicknesses for transverse and longitudinal polarizations using finite element method simulations. This study also reports on the discrepancy in the resonance wavelengths and optical enhancement of the sharp-corner and round-corner nanobars of constant length 100 nm and width 60 nm. The result shows that resonance amplitude and wavelength have strong dependences on the thickness of the nanostructure as well as the sharpness of the corners, which is significant since actual fabricated structure often have rounded corners. Primary resonance mode blue-shifts and broadens as the thickess increases due to decoupling of charge dipoles at the surface for both polarizations. The broadening effect is characterized by measuring the full width at half maximum of the spectra. We also present the surface charge distribution showing dipole mode oscillations at resonance frequency and multimode resonance indicating different oscillation directions of the surface charge based on the polarization direction of the field. Results of this work give insight for precisely tuning nanobar structures for sensing and other enhanced optical applications.


Subject(s)
Gold/chemistry , Infrared Rays , Nanostructures/chemistry , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...