Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 280(1): R115-22, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11124141

ABSTRACT

This study was designed to investigate the pathways involved in neurogenic-mediated articular cartilage damage triggered by a nonsystemic distant subcutaneous or intra-articular inflammation. The cartilage damage was assessed 24 h after subcutaneous or intra-articular complete Freund's adjuvant (CFA) injection measuring patellar proteoglycan (PG) synthesis (ex vivo [Na(2)(35)SO(4)] incorporation) in 96 Wistar rats. Unilateral subcutaneous or intra-articular injection of CFA induced significant decrease (25-29%) in PG synthesis in both patellae. Chronic administration of capsaicin (50 mg. kg(-1). day(-1) during 4 days), which blunted the normal response of C fiber stimulation, prevented the bilateral significant decrease in cartilage synthesis. Similarly, intrathecal injection of MK-801 (10 nmol/day during 5 days), which blocked the glutamatergic synaptic transmission at the dorsal horn of signal originating in primary afferent C fibers, eliminated the CFA-induced PG synthesis decrease in both patellae. Chemical sympathectomy, induced by guanethidine (12.5 mg. kg(-1). day(-1) during 6 wk), also prevented PG synthesis alteration. Finally, compression of the spinal cord at the T3-T5 level had a similar protective effect on the reduction of [Na(2)(35)SO(4)] incorporation. It is concluded that the signal that triggers articular cartilage synthesis damage induced by a distant local inflammation 1) is transmitted through the afferent C fibers, 2) makes glutamatergic synaptic connections with the preganglionic neurons of the sympathetic system, and 3) involves spinal and supraspinal pathways.


Subject(s)
Cartilage, Articular/innervation , Cartilage, Articular/metabolism , Energy Metabolism/physiology , Neurogenic Inflammation/metabolism , Afferent Pathways/metabolism , Animals , Capsaicin/pharmacology , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Freund's Adjuvant , Male , Neurogenic Inflammation/chemically induced , Nociceptors/metabolism , Proteoglycans/metabolism , Rats , Rats, Wistar , Sympathectomy, Chemical
2.
Arthritis Rheum ; 42(9): 1951-60, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10513812

ABSTRACT

OBJECTIVE: To investigate involvement of the nervous system in ipsilateral and contralateral joint inflammation. METHODS: Freund's complete adjuvant (CFA; 1 mg or 1 microg) was injected unilaterally and the messages (a) from the hind paw to the ipsilateral and contralateral knees and (b) from one knee to the contralateral knee were analyzed. The degenerative impact of the local injury on distant cartilage was assessed using patellar proteoglycan synthesis as an indicator. Neurogenic mechanisms were blocked either by spinal cord compression or by injection of neurokinin 1 (NK-1) antagonist, or they were mimicked by intraarticular injection of substance P. The data were compared with those gathered in a model of systemic inflammation, characterized by fever and serum interleukin-6 production. RESULTS: After unilateral subcutaneous injection of CFA, proteoglycan anabolism decreased bilaterally. Spinal cord compression and administration of the NK-1 antagonist inhibited the response in the contralateral limb. Following 1 mg CFA subcutaneous injection, the ipsilateral response implicated both neurogenic and systemic mechanisms, whereas the nervous system alone was implicated after 1 microg subcutaneous CFA injection. The 1 microg CFA intraarticular injection induced a degenerative contralateral signal, which was abolished by spinal cord compression and by pretreatment with the NK-1 antagonist. Intraarticular injection of 1 microg CFA also induced an ipsilateral increase of anabolism, which was enhanced by spinal cord compression. Similar results were obtained after intraarticular injections of substance P. These effects were not reproduced with turpentine treatment, a systemic model, in which spinal cord compression had no effect. CONCLUSION: A unilateral inflammation can induce, by neurogenic mechanisms, distal bilateral degeneration of articular cartilage, implicating involvement of neuropeptides.


Subject(s)
Arthritis, Rheumatoid/etiology , Synaptic Transmission/physiology , Animals , Freund's Adjuvant/administration & dosage , Injections, Intra-Articular , Injections, Subcutaneous , Interleukin-6/blood , Knee Joint , Male , Neurokinin-1 Receptor Antagonists , Prostaglandins/metabolism , Rats , Rats, Wistar , Substance P/administration & dosage , Turpentine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...