Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 602(7895): 58-62, 2022 02.
Article in English | MEDLINE | ID: mdl-35110755

ABSTRACT

Distortions of the observed cosmic microwave background provide a direct measurement of the microwave background temperature at redshifts from 0 to 1 (refs. 1,2). Some additional background temperature estimates exist at redshifts from 1.8 to 3.3 based on molecular and atomic line-excitation temperatures in quasar absorption-line systems, but are model dependent3. No deviations from the expected (1 + z) scaling behaviour of the microwave background temperature have been seen4, but the measurements have not extended deeply into the matter-dominated era of the Universe at redshifts z > 3.3. Here we report observations of submillimetre line absorption from the water molecule against the cosmic microwave background at z = 6.34 in a massive starburst galaxy, corresponding to a lookback time of 12.8 billion years (ref. 5). Radiative pumping of the upper level of the ground-state ortho-H2O(110-101) line due to starburst activity in the dusty galaxy HFLS3 results in a cooling to below the redshifted microwave background temperature, after the transition is initially excited by the microwave background. This implies a microwave background temperature of 16.4-30.2 K (1σ range) at z = 6.34, which is consistent with a background temperature increase with redshift as expected from the standard ΛCDM cosmology4.

2.
Nature ; 553(7689): 473-476, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29211709

ABSTRACT

Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120 + 0641 at redshift z = 7.09 has remained the only one known at z > 7 for more than half a decade. Here we report observations of the quasar ULAS J134208.10 + 092838.61 (hereafter J1342 + 0928) at redshift z = 7.54. This quasar has a bolometric luminosity of 4 × 1013 times the luminosity of the Sun and a black-hole mass of 8 × 108 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old-just five per cent of its current age-reinforces models of early black-hole growth that allow black holes with initial masses of more than about 104 solar masses or episodic hyper-Eddington accretion. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn-Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral. We derive such a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.

3.
Nature ; 486(7402): 233-6, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22699613

ABSTRACT

The Hubble Deep Field provides one of the deepest multiwavelength views of the distant Universe and has led to the detection of thousands of galaxies seen throughout cosmic time. An early map of the Hubble Deep Field at a wavelength of 850 micrometres, which is sensitive to dust emission powered by star formation, revealed the brightest source in the field, dubbed HDF 850.1 (ref. 2). For more than a decade, and despite significant efforts, no counterpart was found at shorter wavelengths, and it was not possible to determine its redshift, size or mass. Here we report a redshift of z = 5.183 for HDF 850.1, from a millimetre-wave molecular line scan. This places HDF 850.1 in a galaxy overdensity at z ≈ 5.2, corresponding to a cosmic age of only 1.1 billion years after the Big Bang. This redshift is significantly higher than earlier estimates and higher than those of most of the hundreds of submillimetre-bright galaxies identified so far. The source has a star-formation rate of 850 solar masses per year and is spatially resolved on scales of 5 kiloparsecs, with an implied dynamical mass of about 1.3 × 10(11) solar masses, a significant fraction of which is present in the form of molecular gas. Despite our accurate determination of redshift and position, a counterpart emitting starlight remains elusive.

SELECTION OF CITATIONS
SEARCH DETAIL
...