Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 26(24): 6589-6599, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33046521

ABSTRACT

PURPOSE: Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is a glycoprotein that has limited expression in normal adult tissues, but is overexpressed in carcinomas of the gastrointestinal tract, the genitourinary and respiratory systems, and breast cancer. As such, CEACAM5 is an attractive target for antibody-based therapies designed to selectively deliver cytotoxic drugs to certain epithelial tumors. Here, we describe preclinical data for a novel antibody-drug conjugate (ADC), SAR408701, which consists of an anti-CEACAM5 antibody (SAR408377) coupled to a maytansinoid agent DM4 via a cleavable linker. EXPERIMENTAL DESIGN: The specificity and binding affinity of SAR408701 to human and cynomolgus monkey CEACAM5 were tested in vitro. The cytotoxic activity of SAR408701 was assessed in CEACAM5-expressing tumor cell lines and using patient-derived xenograft mouse models of CEACAM5-positive tumors. Pharmacokinetic-pharmacodynamic and pharmacokinetic-efficacy relationships were established. SAR408701 toxicity was evaluated in cynomolgus monkey. RESULTS: SAR408701 bound selectively to human and cynomolgus monkey CEACAM5 with similar apparent Kd values (0.017 nmol/L and 0.024 nmol/L, respectively). Both in vitro and in vivo evaluations showed that SAR408701 has cytotoxic activity, leading to in vivo efficacy in single and repeated dosing. Single doses of SAR408701 induced significant increases in the tumor expression of phosphorylated histone H3, confirming the tubulin-targeting mechanism of action. The overall toxicity profile of SAR408701 in cynomolgus monkey was similar to that observed after intravenous administration of DM4 alone. CONCLUSIONS: On the basis of these preclinical data, the ADC SAR408701 is a promising candidate for development as a potential treatment for patients with CEACAM5-positive tumors.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies/pharmacology , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Maytansine/chemistry , Neoplasms, Glandular and Epithelial/drug therapy , Animals , Antibodies/chemistry , Antibodies/therapeutic use , Antibodies, Monoclonal/immunology , Antineoplastic Agents/chemistry , Apoptosis , Carcinoembryonic Antigen/immunology , Cell Proliferation , Female , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/immunology , Humans , Macaca fascicularis , Mice , Mice, SCID , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
J Cell Sci ; 117(Pt 11): 2417-26, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15126641

ABSTRACT

Replicative senescence and oxidative stress have been implicated in ageing, endothelial dysfunction and atherosclerosis. Replicative senescence is determined primarily by telomere integrity. In endothelial cells the glutathione redox-cycle plays a predominant role in the detoxification of peroxides. The aim of this study was to elucidate the role of the glutathione-dependent antioxidant system on the replicative capacity and telomere dynamics of cultured endothelial cells. Human umbilical vein endothelial cells were serially passaged while exposed to regular treatment with 0.1 microM tert-butyl hydroperoxide, a substrate of glutathione peroxidase, or 10 microM L-buthionine-[S,R]-sulphoximine, an inhibitor of glutathione synthesis. Both treatments induced intracellular oxidative stress but had no cytotoxic or cytostatic effects. Nonetheless, treated cultures entered senescence prematurely (30 versus 46 population doublings), as determined by senescence-associated beta-galactosidase staining and a sharp decrease in cell density at confluence. In cultures subjected to oxidative stress terminal restriction fragment (TRF) analysis demonstrated faster telomere shortening (110 versus 55 bp/population doubling) and the appearance of distinct, long TRFs after more than 15-20 population doublings. Fluorescence in situ hybridisation analysis of metaphase spreads confirmed the presence of increased telomere length heterogeneity, and ruled out telomeric end-to-end fusions as the source of the long TRFs. The latter was also confirmed by Bal31 digestion of genomic DNA. Similarly, upregulation of telomerase could not account for the appearance of long TRFs, as oxidative stress induced a rapid and sustained decrease in this activity. These findings demonstrate a key role for glutathione-dependent redox homeostasis in the preservation of telomere function in endothelial cells and suggest that loss of telomere integrity is a major trigger for the onset of premature senescence under mild chronic oxidative stress.


Subject(s)
Cellular Senescence , Endothelial Cells/cytology , Endothelial Cells/metabolism , Oxidative Stress/physiology , Telomere/metabolism , Buthionine Sulfoximine/pharmacology , Buthionine Sulfoximine/toxicity , Cell Cycle/drug effects , Cell Line , Cellular Senescence/drug effects , Down-Regulation , Endothelial Cells/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/toxicity , Glutamate-Cysteine Ligase/antagonists & inhibitors , Humans , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Telomerase/metabolism , Telomere/genetics , tert-Butylhydroperoxide/pharmacology , tert-Butylhydroperoxide/toxicity
3.
Arterioscler Thromb Vasc Biol ; 23(5): 748-54, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12676798

ABSTRACT

OBJECTIVE: Telomerase plays a major role in the control of replicative capacity, a critical property for successful angiogenesis and maintenance of endothelial integrity. In this study, we examined the relationship between telomerase activity and endothelial cell proliferation as well as the regulation of this enzyme by fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF). METHODS AND RESULTS: Telomerase was repressed in endothelial cells freshly derived from intact endothelium, whereas activity was present during logarithmic growth in culture. In cultured human umbilical vein endothelial cells (HUVECs), mRNA levels of hTERT-the catalytic subunit of telomerase-and enzyme activity decreased reversibly on induction of quiescence. Treatment of quiescent HUVECs with FGF-2 restored telomerase activity in a time- and dose-dependent manner, whereas VEGF had no such effect, although both factors induced comparable mitogenic responses. FGF-2, but not VEGF, upregulated the mRNA levels for hTERT and for the hTERT gene transactivation factor Sp1. Serial passage in the presence of individual growth factors accelerated the accumulation of senescent cells in VEGF-treated cultures compared with cultures treated with FGF-2. CONCLUSIONS: FGF-2, but not VEGF, restores telomerase activity and maintains the replicative capacity of endothelial cells.


Subject(s)
Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Fibroblast Growth Factor 2/pharmacology , Telomerase/biosynthesis , Cell Division/drug effects , Cells, Cultured/drug effects , Cells, Cultured/enzymology , DNA-Binding Proteins , Endothelial Cells/enzymology , Endothelium, Vascular/cytology , Enzyme Induction/drug effects , Genes, myc , Humans , Proto-Oncogene Proteins c-myc/biosynthesis , Sp1 Transcription Factor/biosynthesis , Sp1 Transcription Factor/genetics , Telomerase/genetics , Vascular Endothelial Growth Factor A/pharmacology
4.
Mol Cell Biol ; 22(22): 7877-88, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12391156

ABSTRACT

The retinoblastoma (RB) gene product has been shown to restrict cell proliferation, promote cell differentiation, and inhibit apoptosis. Loss of RB function can induce both p53-dependent apoptosis and p53-independent apoptosis; little is known about the mechanisms of RB-regulated p53-independent apoptosis. Here we show that RB specifically activates transcription of the survival gene bcl-2 in epithelial cells but not in NIH 3T3 mesenchymal cells. This transcriptional activity is mediated by the transcription factor AP-2. By monitoring protein-DNA interactions in living cells using formaldehyde cross-linking and chromatin immunoprecipitation, we show that endogenous RB and AP-2 both bind to the same bcl-2 promoter sequence. In addition, we demonstrate that RB and AP-2 also bind to the E-cadherin gene promoter in vivo, consistent with regulation of this promoter by both AP-2 and RB in epithelial cells. This study provides evidence that RB activates bcl-2 and E-cadherin by binding directly to the respective promoter sequences and not indirectly by repressing an inhibitor. This recruitment is mediated by a transcription factor, in this case AP-2. For the first time, our results suggest a direct molecular mechanism by which RB might inhibit apoptosis independently of p53. The results are discussed in a context where RB and Bcl-2 contribute under nonpathological conditions to the maintenance of cell viability in association with a differentiated phenotype, contributing to the tumor suppressor function of RB and playing important roles in normal development.


Subject(s)
DNA-Binding Proteins/metabolism , Epithelial Cells/physiology , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-2/genetics , Retinoblastoma Protein/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Acetylation , Cadherins/genetics , Cell Line , Chromatin/metabolism , Epithelial Cells/cytology , Gene Expression Regulation , Genes, Reporter , Histones/metabolism , Humans , Models, Genetic , Protein Binding , Proto-Oncogene Proteins c-bcl-2/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factor AP-2
SELECTION OF CITATIONS
SEARCH DETAIL
...