Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 22(3): 441-449, 2020 May.
Article in English | MEDLINE | ID: mdl-31834979

ABSTRACT

In subalpine grasslands of the central French Alps, cessation of traditional mowing promotes dominance of Patzkea paniculata (L.) G.H.Loos (Poaceae) tussocks, with high biomass but low fodder quality. Mowing limits P. paniculata abundance through the depletion of its water-soluble carbohydrate (WSC) reserves, which sustain early spring growth initiation. However, the effectiveness of mowing effects is modulated by grassland functional composition, fertilization and climate change, as WSC compounds, and notably fructans, support plant physiological responses to climate stresses such as drought or frost. To characterize the mechanisms underpinning the control of P. paniculata under global change, we tested the effects of climate manipulation (combined snow removal and drought) and management (cutting and fertilization) alone or in combination on P. paniculata WSC storage in assembled grassland communities of varying functional composition. Management and climate treatments individually decreased seasonal fructan storage, with neither additive nor synergic effects between them, primarily due to the dominance of management over climate effects. Fructan amounts were higher in individuals growing in unmanaged exploitative communities compared to unmanaged conservative communities, regardless of climate treatments, but management overrode these differences. Our findings suggest that reduction by combined snow removal and drought of P. paniculata carbon allocation to WSC storage may similarly limit its dominance to that in current mowing practices.


Subject(s)
Carbohydrates , Droughts , Grassland , Poaceae , Water , Carbohydrates/chemistry , Poaceae/chemistry , Poaceae/metabolism , Seasons , Water/chemistry
2.
Ann Bot ; 94(2): 311-21, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15271775

ABSTRACT

BACKGROUND AND AIMS: The influence of initial residual leaf area and initial N reserves on N uptake, final N distribution, and yield in alfalfa regrowing after cutting, were studied. METHODS: The effects of two levels of initial residual leaf area (plants cut to 15 cm, with (L+) or without (L-) their leaves) and two initial levels of N status [high N (HN) or low N (LN)] on growth, N uptake and N partitioning, allocation and storage after 29 d of post-cutting regrowth were analysed. KEY RESULTS: During most of the regrowth period (8-29 d after the initial harvest), HN and L+ plants had higher net N uptake rates than LN and L- plants, respectively, resulting in a greater final mineral N uptake for these treatments. However, the final partitioning of exogenous N to the regrowing shoots was the same for all treatments (67 % of total exogenous N on average). Final shoot growth, total plant N content, and N allocation to the different taproot N pools were significantly lower in plants with reduced initial leaf area and initial N reserve status. CONCLUSIONS: Although both initial residual leaf area and initial N reserves influenced alfalfa regrowth, the residual leaf area had a greater effect on final forage production and N composition in the taproot, whereas the N uptake rate and final total N content in plant were more affected by the initial N reserve status than by the residual leaf area. Moreover, N storage as proteins (especially as vegetative storage proteins, rather than nitrate or amino acids) in the taproot allowed nitrate uptake to occur at significant rates. This suggests that protein storage is not only a means of sequestering N in a tissue for further mobilization, utilization for growth or tissue maintenance, but may also indirectly influence both N acquisition and reduction capacities.


Subject(s)
Medicago sativa/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Biological Transport/drug effects , Biomass , Medicago sativa/drug effects , Medicago sativa/growth & development , Models, Biological , Nitrates/pharmacology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism
3.
J Environ Qual ; 33(2): 637-44, 2004.
Article in English | MEDLINE | ID: mdl-15074816

ABSTRACT

An experiment was performed to better understand to what extent nitrogen fertilization rate and date and amount of urine deposition, when acting in combination, influence nitrate leaching under grassland. Leaching was studied during two successive winters using 2-m2 grassed lysimeters under three levels of N fertilization (0, 150, and 300 kg N ha(-1) yr(-1), referred to as 0N, 150N, and 300N, respectively), two levels of 15N-labeled urine (105 and 165 kg N ha(-1), referred to as A2 and A3, respectively), and three dates of urine application (spring, summer, and fall). During the first winter, total N leaching losses varied between 2 and 50 kg N ha(-1). When tested in combination, N applied as urine to grassland resulted in three times the total N loss by leaching that occurred following N fertilization in the first winter (4.3, 20.8, 34.9, 14.2, 17.1, and 28.7 kg NO3- -N ha(-1) for no urine, A2, A3, ON, 150N, and 300N, respectively). Leaching of 15N urine significantly depended on the date of application: 6.6, 17.3, and 29.1 kg for spring, summer, and fall, respectively. A similar pattern was observed for the contribution of 15N urine to total N leaching with 4.3, 12.9, and 21.4%. However, urine application, both in terms of amount and date, showed very little long-term effect on these N losses in Year 2. In our conditions of low winter rainfall and drainage, grazing management (through season, urinary N amounts, and urine N concentration) resulted in a higher impact on water nitrate quality than moderate N fertilization management.


Subject(s)
Fertilizers , Nitrates/analysis , Nitrogen/analysis , Soil Pollutants/analysis , Water Pollutants/analysis , Animals , Cattle , Environmental Monitoring , Nitrogen/chemistry , Seasons , Solubility , Urine
4.
J Environ Qual ; 32(4): 1405-13, 2003.
Article in English | MEDLINE | ID: mdl-12931896

ABSTRACT

The fate of 15N-labeled cattle (Bos taurus) urine (52 g N m(-2)), applied to a 0.4-m2 surface area on three dates between May and October to three different pasture soils, was studied using 2-m2 lysimeters. Over a period of two years, the sward recovered most of the 15N, but the amount recovered decreased with application date (62% in spring to 17% in fall). However, N uptake by ryegrass (Lolium perenne L.) in Year 2 showed that some nitrogen came from the previous year's urine application. The largest leaching losses of urine N resulted from the late application date. These losses mainly occurred during the first winter despite the small amount of water drainage. Soil type largely determined 15N losses. The granitic Brunisol was the most freely draining and had the greatest leaching (up to 35% recovery of urinary N). In contrast, leaching in the silty loam Neoluvisol remained under 4% of 15N applied. The Calcosol appeared to be susceptible to all kinds of N losses with intermediate unaccounted-for N pool and leaching fractions and lesser utilization of urinary N by grass. Immobilization in soil organic matter, roots and litter, and stubble pools were not markedly influenced by the date of application or soil type. They amounted to 25 to 33, 2, and 2% of N applied as urine, respectively. In these climatic conditions with moderate drainage, leaching of water poor in quality for nitrate only occurred for late-season grazing or on the granitic Brunisol, which was very vulnerable to leaching.


Subject(s)
Lolium/chemistry , Nitrogen/pharmacokinetics , Soil , Urine/chemistry , Animals , Cattle , Environmental Monitoring , Nitrates/analysis , Nitrogen/analysis , Plant Roots , Plants, Edible , Seasons , Soil Pollutants/analysis , Water Movements , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...