Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 158(10): 3130-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20685018

ABSTRACT

PAH concentrations have been determined in 47 seasonal snowpack samples collected in the Valbelluna valley and in the Bellunesi Dolomites National Park, in the Italian North-Eastern Alps, during the winter of 2005. The SigmaPAH concentration in high-altitude alpine sites (above 1700 m) was 32+/-20 ng/kg while in valley bottom urban areas it was 165+/-54 ng/kg with maximum values of 290 ng/kg. The GIS mapping technique was employed to produce a PAH spatial distribution. The urbanized Valbelluna valley, and in particular the SW part, had the highest accumulation of all PAH, with values an order of magnitude more than those in rural and alpine areas. This behaviour is consistent with urban air quality data, and is due to geo-morphological and meteorological factors such as the deeper shape of the valley at the position of the town of Feltre and the low altitude of the boundary layer during the winter season.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Snow/chemistry , Italy
2.
Environ Sci Technol ; 44(9): 3260-6, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20392089

ABSTRACT

The occurrence of organic pollutants in European Alpine snow/ice has been reconstructed over the past three centuries using a new online extraction method for polycyclic aromatic hydrocarbons (PAH) followed by liquid chromatographic determination. The meltwater flow from a continuous ice core melting system was split into two aliquots, with one aliquot directed to an inductively coupled plasma quadrupole mass spectrometer for continuous trace elements determinations and the second introduced into a solid phase C18 (SPE) cartridge for semicontinuous PAH extraction. The depth resolution for PAH extractions ranged from 40 to 70 cm, and corresponds to 0.7-5 years per sample. The concentrations of 11 PAH were determined in dated snow/ice samples to reconstruct the atmospheric concentration of these compounds in Europe for the last 300 years. The PAH pattern is dominated by phenanthrene (Phe), fluoranthene (Fla), and pyrene (Pyr), which represent 60-80% of the total PAH mass. Before 1875 the sum of PAH concentration (SigmaPAH) was very low with total mean concentrations less than 2 ng/kg and 0.08 ng/kg for the heavier compounds (SigmaPAH*, more than four aromatic rings). During the first phase of the industrial revolution (1770-1830) the PAH deposition showed a weak increase which became much greater from the start of the second phase of the industrial revolution at the end of 19th Century. In the 1920s, economic recession in Europe decreased PAH emissions until the 1930s when they increased again and reached a maximum concentration of 32 ng/kg from 1945 to 1955. From 1955 to 1975 the PAH concentrations decreased significantly, reflecting improvements in emission controls especially from major point sources, while from 1975 to 2003 they rose to levels equivalent to those in 1910. The Fla/(Fla+Pyr) ratio is often used for source assignment and here indicates an increase in the relative contribution of gasoline and diesel combustion with respect to coal and wood burning from 1860 to the 1980s. This trend was reversed during the last two decades.


Subject(s)
Ice/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Snow , Air Pollutants/analysis , Altitude , Chromatography/methods , Chromatography, Liquid/methods , Environmental Monitoring/methods , Europe , Reproducibility of Results , Water/chemistry , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL