Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399308

ABSTRACT

Carbon-based nanoparticles (CNPs) have gained recognition because of their good biocompatibility, easy preparation, and excellent phototherapy properties. In biomedicine applications, CNPs are widely applied as photodynamic agents for antibacterial purposes. Photodynamic therapy has been considered a candidate for antibacterial agents because of its noninvasiveness and minimal side effects, especially in the improvement in antibacterial activity against multidrug-resistant bacteria, compared with conventional antibiotic medicines. Here, we developed CNPs from an active polyhydroxy phenolic compound, namely, gallic acid, which has abundant hydroxyl groups that can yield photodynamic effects. Gallic acid CNPs (GACNPs) were rapidly fabricated via a microwave-assisted technique at 200 °C for 20 min. GACNPs revealed notable antibacterial properties against Gram-positive and Gram-negative bacteria, including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The minimum inhibitory concentrations of GACNPs in S. aureus and E. coli were equal at approximately 0.29 mg/mL and considerably lower than those in gallic acid solution. Furthermore, the GACNP-loaded hydrogel patches demonstrated an attractive photodynamic effect against S. aureus, and it was superior to that of Ag hydrofiber®, a commercial material. Therefore, the photodynamic properties of GACNPs can be potentially used in the development of antibacterial hydrogels for wound healing applications.

2.
AAPS PharmSciTech ; 24(5): 135, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308690

ABSTRACT

Carbon-based nanoparticles (CNPs) are a new type of interesting nanomaterials applied in various pharmaceutical fields due to their outstanding biocompatible properties. Novel pH-sensitive CNPs were rapidly synthesized within 1 min by microwave-assisted technique for doxorubicin (DOX) delivery into five cancer cell lines, including breast cancer (BT-474 and MDA-MB-231 cell lines), colon cancer (HCT and HT29 cell lines), and cervical cancer (HeLa cell lines). CNPs and DOX-loaded CNPs (CNPs-DOX) had nano-size of 11.66 ± 2.32 nm and 43.24 ± 13.25 nm, respectively. DOX could be self-assembled with CNPs in phosphate buffer solution at pH 7.4 through electrostatic interaction, exhibiting high loading efficiency at 85.82%. The release of DOX from CNPs-DOX at pH 5.0, often observed in the tumor, was nearly two times greater than the release at physiological condition pH 7.4. Furthermore, the anticancer activity of CNPs-DOX was significantly enhanced compared to free DOX in five cancer cell lines. CNPs-DOX could induce cell death through apoptosis induction in MDA-MB-231 cells. The findings revealed that CNPs-DOX exhibited a promising pH-sensitive nano-system as a drug delivery carrier for cancer treatment.


Subject(s)
Nanoparticles , Neoplasms , Humans , HeLa Cells , Delayed-Action Preparations , Microwaves , Doxorubicin , Drug Carriers , Carbon , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...