Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Biomed Pharmacother ; 175: 116749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761420

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE), resulting from a lack of blood flow and oxygen before or during newborn delivery, is a leading cause of cerebral palsy and neurological disability in children. Therapeutic hypothermia (TH), the current standard of care in HIE, is only beneficial in 1 of 7-8 cases. Therefore, there is a critical need for more efficient treatments. We have previously reported that omega-3 (n-3) fatty acids (FA) carried by triglyceride (TG) lipid emulsions provide neuroprotection after experimental hypoxic-ischemic (HI) injury in neonatal mice. Herein, we propose a novel acute therapeutic approach using an n-3 diglyceride (DG) lipid emulsions. Importantly, n-3 DG preparations had much smaller particle size compared to commercially available or lab-made n-3 TG emulsions. We showed that n-3 DG molecules have the advantage of incorporating at substantially higher levels than n-3 TG into an in vitro model of phospholipid membranes. We also observed that n-3 DG after parenteral administration in neonatal mice reaches the bloodstream more rapidly than n-3 TG. Using neonatal HI brain injury models in mice and rats, we found that n-3 DG emulsions provide superior neuroprotection than n-3 TG emulsions or TH in decreasing brain infarct size. Additionally, we found that n-3 DGs attenuate microgliosis and astrogliosis. Thus, n-3 DG emulsions are a superior, promising, and novel therapy for treating HIE.


Subject(s)
Animals, Newborn , Emulsions , Fatty Acids, Omega-3 , Hypoxia-Ischemia, Brain , Animals , Hypoxia-Ischemia, Brain/drug therapy , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Mice , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Mice, Inbred C57BL , Disease Models, Animal , Male , Brain/drug effects , Brain/metabolism , Brain/pathology
2.
Lancet ; 403(10423): 244-245, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38219772
3.
Cell Mol Neurobiol ; 43(5): 2219-2241, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36571634

ABSTRACT

Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-ß as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.


Subject(s)
Alzheimer Disease , Brain Injuries, Traumatic , Mice , Animals , Alzheimer Disease/metabolism , Mitochondria/metabolism , Up-Regulation , Endoplasmic Reticulum/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain Injuries, Traumatic/metabolism , Lipids
4.
J Clin Lipidol ; 16(6): 797-812, 2022.
Article in English | MEDLINE | ID: mdl-36243606

ABSTRACT

The Abetalipoproteinemia and Related Disorders Foundation was established in 2019 to provide guidance and support for the life-long management of inherited hypocholesterolemia disorders. Our mission is "to improve the lives of individuals and families affected by abetalipoproteinemia and related disorders". This review explains the molecular mechanisms behind the monogenic hypobetalipoproteinemia disorders and details their specific pathophysiology, clinical presentation and management throughout the lifespan. In this review, we focus on abetalipoproteinemia, homozygous hypobetalipoproteinemia and chylomicron retention disease; rare genetic conditions that manifest early in life and cause severe complications without appropriate treatment. Absent to low plasma lipid levels, in particular cholesterol and triglyceride, along with malabsorption of fat and fat-soluble vitamins are characteristic features of these diseases. We summarize the genetic basis of these disorders, provide guidance in their diagnosis and suggest treatment regimens including high dose fat-soluble vitamins as therapeutics. A section on preconception counseling and other special considerations pertaining to pregnancy is included. This information may be useful for patients, caregivers, physicians and insurance agencies involved in the management and support of affected individuals.


Subject(s)
Abetalipoproteinemia , Hypobetalipoproteinemias , Lipid Metabolism Disorders , Humans , Abetalipoproteinemia/diagnosis , Abetalipoproteinemia/genetics , Abetalipoproteinemia/therapy , Hypobetalipoproteinemias/diagnosis , Hypobetalipoproteinemias/genetics , Hypobetalipoproteinemias/therapy , Homozygote , Vitamins
5.
JAMA Pediatr ; 176(3): e216436, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35044430

ABSTRACT

IMPORTANCE: Little is known about COVID-19 outcomes among children and adolescents in sub-Saharan Africa, where preexisting comorbidities are prevalent. OBJECTIVE: To assess the clinical outcomes and factors associated with outcomes among children and adolescents hospitalized with COVID-19 in 6 countries in sub-Saharan Africa. DESIGN, SETTING, AND PARTICIPANTS: This cohort study was a retrospective record review of data from 25 hospitals in the Democratic Republic of the Congo, Ghana, Kenya, Nigeria, South Africa, and Uganda from March 1 to December 31, 2020, and included 469 hospitalized patients aged 0 to 19 years with SARS-CoV-2 infection. EXPOSURES: Age, sex, preexisting comorbidities, and region of residence. MAIN OUTCOMES AND MEASURES: An ordinal primary outcome scale was used comprising 5 categories: (1) hospitalization without oxygen supplementation, (2) hospitalization with oxygen supplementation, (3) ICU admission, (4) invasive mechanical ventilation, and (5) death. The secondary outcome was length of hospital stay. RESULTS: Among 469 hospitalized children and adolescents, the median age was 5.9 years (IQR, 1.6-11.1 years); 245 patients (52.4%) were male, and 115 (24.5%) had comorbidities. A total of 39 patients (8.3%) were from central Africa, 172 (36.7%) from eastern Africa, 208 (44.3%) from southern Africa, and 50 (10.7%) from western Africa. Eighteen patients had suspected (n = 6) or confirmed (n = 12) multisystem inflammatory syndrome in children. Thirty-nine patients (8.3%) died, including 22 of 69 patients (31.9%) who required intensive care unit admission and 4 of 18 patients (22.2%) with suspected or confirmed multisystem inflammatory syndrome in children. Among 468 patients, 418 (89.3%) were discharged, and 16 (3.4%) remained hospitalized. The likelihood of outcomes with higher vs lower severity among children younger than 1 year expressed as adjusted odds ratio (aOR) was 4.89 (95% CI, 1.44-16.61) times higher than that of adolescents aged 15 to 19 years. The presence of hypertension (aOR, 5.91; 95% CI, 1.89-18.50), chronic lung disease (aOR, 2.97; 95% CI, 1.65-5.37), or a hematological disorder (aOR, 3.10; 95% CI, 1.04-9.24) was associated with severe outcomes. Age younger than 1 year (adjusted subdistribution hazard ratio [asHR], 0.48; 95% CI, 0.27-0.87), the presence of 1 comorbidity (asHR, 0.54; 95% CI, 0.40-0.72), and the presence of 2 or more comorbidities (asHR, 0.26; 95% CI, 0.18-0.38) were associated with reduced rates of hospital discharge. CONCLUSIONS AND RELEVANCE: In this cohort study of children and adolescents hospitalized with COVID-19 in sub-Saharan Africa, high rates of morbidity and mortality were observed among infants and patients with noncommunicable disease comorbidities, suggesting that COVID-19 vaccination and therapeutic interventions are needed for young populations in this region.


Subject(s)
COVID-19/therapy , Child, Hospitalized , Outcome Assessment, Health Care , Pneumonia, Viral/therapy , Adolescent , Africa South of the Sahara/epidemiology , COVID-19/epidemiology , COVID-19/mortality , Child , Child, Preschool , Female , Humans , Infant , Length of Stay/statistics & numerical data , Male , Oxygen Inhalation Therapy , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Respiration, Artificial , SARS-CoV-2
6.
Am J Clin Nutr ; 115(2): 570-587, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34634105

ABSTRACT

Bioactive ingredients for infant formula have been sought to reduce disparities in health outcomes between breastfed and formula-fed infants. Traditional food safety methodologies have limited ability to assess some bioactive ingredients. It is difficult to assess the effects of nutrition on the infant immune system because of coincident developmental adaptations to birth, establishment of the microbiome and introduction to solid foods, and perinatal environmental factors. An expert panel was convened to review information on immune system development published since the 2004 Institute of Medicine report on evaluating the safety of new infant formula ingredients and to recommend measurements that demonstrate the safety of bioactive ingredients intended for that use. Panel members participated in a 2-d virtual symposium in November 2020 and in follow-up discussions throughout early 2021. Key topics included identification of immune system endpoints from nutritional intervention studies, effects of human milk feeding and human milk substances on infant health outcomes, ontologic development of the infant immune system, and microbial influences on tolerance. The panel explored how "nonnormal" conditions such as preterm birth, allergy, and genetic disorders could help define developmental immune markers for healthy term infants. With consideration of breastfed infants as a reference, ensuring proper control groups, and attention to numerous potential confounders, the panel recommended a set of standard clinical endpoints including growth, response to vaccination, infection and other adverse effects related to inflammation, and allergy and atopic diseases. It compiled a set of candidate markers to characterize stereotypical patterns of immune system development during infancy, but absence of reference ranges, variability in methods and populations, and unreliability of individual markers to predict disease prevented the panel from including many markers as safety endpoints. The panel's findings and recommendations are applicable for industry, regulatory, and academic settings, and will inform safety assessments for immunomodulatory ingredients in foods besides infant formula.


Subject(s)
Food Ingredients/analysis , Immune System/growth & development , Infant Formula/analysis , Infant Nutritional Physiological Phenomena/immunology , Phytochemicals/immunology , Female , Humans , Infant , Infant, Newborn , Male
8.
Clin Infect Dis ; 73(10): 1913-1919, 2021 11 16.
Article in English | MEDLINE | ID: mdl-33580256

ABSTRACT

Globally, there are prevailing knowledge gaps in the epidemiology, clinical manifestations, and outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among children and adolescents; and these gaps are especially wide in African countries. The availability of robust age-disaggregated data is a critical first step in improving knowledge on disease burden and manifestations of coronavirus disease 2019 (COVID-19) among children. Furthermore, it is essential to improve understanding of SARS-CoV-2 interactions with comorbidities and coinfections such as human immunodeficiency virus (HIV), tuberculosis, malaria, sickle cell disease, and malnutrition, which are highly prevalent among children in sub-Saharan Africa. The African Forum for Research and Education in Health (AFREhealth) COVID-19 Research Collaboration on Children and Adolescents is conducting studies across Western, Central, Eastern, and Southern Africa to address existing knowledge gaps. This consortium is expected to generate key evidence to inform clinical practice and public health policy-making for COVID-19 while concurrently addressing other major diseases affecting children in African countries.


Subject(s)
COVID-19 , Coinfection , Tuberculosis , Adolescent , Africa South of the Sahara/epidemiology , Child , Humans , SARS-CoV-2
10.
Clin Nutr ; 40(3): 987-996, 2021 03.
Article in English | MEDLINE | ID: mdl-32753350

ABSTRACT

BACKGROUND & AIMS: Medium-chain triglycerides (TG) (MCT) and fish oil (FO) TG are incorporated as the core TG component into intravenous (IV) lipid emulsions for infusion in parenteral nutrition. Bolus injections of IV emulsions, on the other hand, have emerged as a novel therapeutic approach to treat various acute disorders. However, intravascular metabolism and organ delivery of acute IV injection of emulsions containing both MCT and FO are not fully defined, nor have they been characterized across common experimental animal models. We characterized and compared blood clearance kinetics and organ distribution of bolus injections of MCT/FO emulsions among different animal species. We also examined whether sex differences or feeding status can affect catabolic properties of MCT/FO lipid emulsions. DESIGN: Blood clearance rates of lipid emulsions with specific TG composition were compared in rats IV injected with [3H]cholesteryl hexadecyl ether labeled pure n-6 long-chain (LCT) and n-3 FO TG lipid emulsions, or emulsions containing MCT and FO at different ratios (wt/wt), which include 8:2 (80% MCT: 20% FO), 5:4:1 (50% MCT: 40% LCT: 10% FO) and SMOF (30% LCT: 30% MCT: 25% olive oil: 10% FO). Dose-response effects (0.016 mg-1.6 mg TG/g body weight) of the MCT/FO 8:2 emulsions on blood clearance properties and organ delivery were determined in both mice and rats. Blood clearance kinetics and organ uptake of MCT/FO 8:2 emulsions were compared between male and female rats and between fed and fasted rats. Changes in plasma lipid profiles after acute injections of MCT/FO 8:2 lipid emulsion at different doses (0.043, 0.133, and 0.4 mg TG/g body weight) were characterized in non-human primates (Cynomolgus monkeys). RESULTS: MCT/FO 8:2 emulsion was cleared faster in rats when compared with other emulsions with different TG contents. Mice had faster blood clearance and higher fractional catabolic rates (FCR) when compared with the rats injected with MCT/FO 8:2 emulsions regardless of the injected doses. Mice and rats had similar plasma TG and free fatty acid (FFA) levels after low- or high-dose injections of the MCT/FO emulsion. Tissue distribution of the MCT/FO 8:2 lipid emulsion are comparable between mice and rats, where liver had the highest uptake per recovered dose among all organs (>60%). Feeding status and sex differences did not alter the blood clearance rate of the MCT/FO 8:2 emulsion in rats. In a nonhuman primate model, dose-response increases in plasma TG and FFA were observed after IV injection of MCT/FO 8:2 emulsions within the 1st 10 min. CONCLUSION: A lipid emulsion containing both MCT and FO TG is cleared rapidly in blood and readily available for organ uptake in rodent and primate animal models. Characterization of the blood clearance properties of the MCT/FO 8:2 emulsion administered in various animal models may provide further insight into the safety and efficacy profiles for future therapeutic use of bolus injections of MCT/FO emulsions in humans.


Subject(s)
Fat Emulsions, Intravenous/pharmacokinetics , Fish Oils/pharmacokinetics , Lipids/blood , Triglycerides/pharmacokinetics , Animals , Biological Availability , Female , Kinetics , Liver/metabolism , Macaca fascicularis , Male , Metabolic Clearance Rate , Mice , Models, Animal , Olive Oil/pharmacokinetics , Parenteral Nutrition , Rats , Triglycerides/chemistry
11.
Exp Neurol ; 335: 113495, 2021 01.
Article in English | MEDLINE | ID: mdl-33038416

ABSTRACT

Mitochondria-related cell death pathways play a major role in ischemic brain injury. Thus, mitochondrial "protective" molecules could be considered for new therapeutic regimens. We recently reported that acute administration of docosahexaenoic acid (DHA) triglyceride lipid emulsion, immediately after hypoxic-ischemic (HI) insult, markedly attenuated brain infarct size. This was associated with an early change of DHA-derived specialized pro-resolving mediator (SPM) profiles. Specifically, DHA treatment induced a 50% increase of neuroprotectin D1 (NPD1) levels in ischemic brain. Based on these findings, we questioned if direct administration of NPD1 after HI injury also affords neuroprotection, and if so, by what mechanisms. Using HI insult to mimic ischemic stroke in neonatal mice, we observed that acute intraperitoneal injection of NPD1 immediately after HI injury prevented the expansion of the ischemic core by ~40% and improved coordination and motor abilities compared to the control group. At 7 days after HI injury, NPD1 treatment decreased ipsilateral hemisphere atrophy and preserved motor functions in wire-holding and bridge-crossing tests compared to control littermates. Brain mitochondria, isolated at 4 h after reperfusion from mice treated with NPD1, showed an increase in the capacity to buffer calcium after HI injury, as result of the preservation of mitochondrial membranes. Further, NPD1 induced a reduction of mitochondrial BAX translocation and oligomerization, attenuated cytochrome C release and decreased AIF nuclear translocation. To confirm whether NPD1 acts as BAX inhibitor, we evaluated NPD1 action co-administrated with a pro-apoptotic agent, staurosporine, using mouse embryonic fibroblasts as in vitro model of apoptosis. NPD1 exposure markedly decreased mitochondria-mediated apoptosis, blocking BAX translocation from cytosol to mitochondria and subsequently reducing caspase-3 activation. Our findings provide novel evidence that the neuroprotective action of NPD1 is elicited rapidly in the first few hours after ischemic injury and is associated with both preserved mitochondrial membrane structure and reduced BAX mitochondrial translocation and activation.


Subject(s)
Apoptosis/drug effects , Brain Ischemia/prevention & control , Docosahexaenoic Acids/pharmacology , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Animals , Animals, Newborn , Atrophy , Brain/pathology , Brain Infarction/chemically induced , Brain Infarction/drug therapy , Docosahexaenoic Acids/therapeutic use , Ischemic Stroke/chemically induced , Ischemic Stroke/drug therapy , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/therapeutic use , Psychomotor Performance/drug effects , Reperfusion Injury/drug therapy , bcl-2-Associated X Protein/antagonists & inhibitors , bcl-2-Associated X Protein/metabolism
12.
Article in English | MEDLINE | ID: mdl-33038830

ABSTRACT

We recently reported that acute injection of docosahexaenoic acid (DHA) triglyceride emulsions (tri-DHA) conferred neuroprotection after hypoxic-ischemic (HI) injury in a neonatal mouse stroke model. We showed that exogenous DHA increased concentrations of DHA in brain mitochondria as well as DHA-derived specialized pro-resolving mediator (SPM) levels in the brain. The objective of the present study was to investigate the distribution of emulsion particles and changes in plasma lipid profiles after tri-DHA injection in naïve mice and in animals subjected to HI injury. We also examined whether tri-DHA injection would change DHA- and eicosapentaenoic acid (EPA)-derived SPM levels in the brain. To address this, neonatal (10-day-old) naïve and HI mice were injected with radiolabeled tri-DHA emulsion (0.375 g tri-DHA/kg bw), and blood clearance and tissue distribution were analyzed. Among all the organs assayed, the lowest uptake of emulsion particles was in the brain (<0.4% recovered dose) in both naïve and HI mice, while the liver had the highest uptake. Tri-DHA administration increased DHA concentrations in plasma lysophosphatidylcholine and non-esterified fatty acids. Additionally, treatment with tri-DHA after HI injury significantly elevated the levels of DHA-derived SPMs and monohydroxy-containing DHA-derived products in the brain. Further, tri-DHA administration increased resolvin E2 (RvE2, 5S,18R-dihydroxy-eicosa-6E,8Z,11Z,14Z,16E-pentaenoic acid) and monohydroxy-containing EPA-derived products in the brain. These results suggest that the transfer of DHA through plasma lipid pools plays an important role in DHA brain transport in neonatal mice subjected to HI injury. Furthermore, increases in EPA and EPA-derived SPMs following tri-DHA injection demonstrate interlinked metabolism of these two fatty acids. Hence, changes in both EPA and DHA profile patterns need to be considered when studying the protective effects of DHA after HI brain injury. Our results highlight the need for further investigation to differentiate the effects of DHA from EPA on neuroprotective pathways following HI damage. Such information could contribute to the development of specific DHA-EPA formulations to improve clinical endpoints and modulate potential biomarkers in ischemic brain injury.


Subject(s)
Brain Injuries , Brain/metabolism , Docosahexaenoic Acids , Eicosapentaenoic Acid/blood , Hypoxia-Ischemia, Brain , Triglycerides , Animals , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries/pathology , Docosahexaenoic Acids/pharmacokinetics , Docosahexaenoic Acids/pharmacology , Emulsions , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Triglycerides/pharmacokinetics , Triglycerides/pharmacology
13.
Annu Rev Nutr ; 40: 161-187, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32966188

ABSTRACT

This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.


Subject(s)
Brain Injuries/drug therapy , Fatty Acids, Omega-3/therapeutic use , Heart Diseases/prevention & control , Spinal Cord Injuries/drug therapy , Drug Administration Schedule , Fatty Acids, Omega-3/administration & dosage , Humans
14.
BMC Nutr ; 6: 38, 2020.
Article in English | MEDLINE | ID: mdl-32864153

ABSTRACT

BACKGROUND: In 1996 and in 2006, Palestine initiated salt iodization and multiple micronutrient fortification of wheat flour, respectively as a strategy to prevent deficiencies of these nutrients. In 2009, we assessed the impact of these interventions on the health and nutritional status of schoolchildren residing in the West Bank. METHODS: We surveyed a sample of 22 schools run by the UN Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) and the Palestinian Government. We randomly selected students from the first (mean age 6.7 years [SD 0.5]), sixth (11.8 years [0.6]), and ninth grades (14.8 years [0.6]). Data were obtained from 1484 (99%) of 1500 students planned for enrollment. RESULTS: Our results suggest that iodine intake appears adequate and there was essentially no iodine deficiency. As to the status of other micronutrients, the main nutritional micronutrient risks for schoolchildren in the West Bank continue to be low serum levels of iron, zinc, and vitamin B-12; folate levels were seemingly high. The overall prevalence of anemia was 9.6%, but there were pockets of anemia in certain districts. Almost 42% of the anemia in our sample was explained by iron deficiency. There were significant differences in iron deficiency between girls and boys, 29.5% vs. 15.7%, respectively (p = 0.0001). There were no cases of lead toxicity in the studied sample. CONCLUSIONS: Wheat flour and salt fortification has had a major influence on improving the micronutrient status of Palestinian children, for some but not all micronutrients. The recommended key blood and biochemical parameters to be incorporated in the surveillance system are iron, zinc, and vitamin B12.

15.
Transl Psychiatry ; 10(1): 231, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32661301

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder in children, with genetic factors accounting for 75-80% of the phenotypic variance. Recent studies have suggested that ADHD patients might present with atypical central myelination that can persist into adulthood. Given the essential role of sphingolipids in myelin formation and maintenance, we explored genetic variation in sphingolipid metabolism genes for association with ADHD risk. Whole-exome genotyping was performed in three independent cohorts from disparate regions of the world, for a total of 1520 genotyped subjects. Cohort 1 (MTA (Multimodal Treatment study of children with ADHD) sample, 371 subjects) was analyzed as the discovery cohort, while cohorts 2 (Paisa sample, 298 subjects) and 3 (US sample, 851 subjects) were used for replication. A set of 58 genes was manually curated based on their roles in sphingolipid metabolism. A targeted exploration for association between ADHD and 137 markers encoding for common and rare potentially functional allelic variants in this set of genes was performed in the screening cohort. Single- and multi-locus additive, dominant and recessive linear mixed-effect models were used. During discovery, we found statistically significant associations between ADHD and variants in eight genes (GALC, CERS6, SMPD1, SMPDL3B, CERS2, FADS3, ELOVL5, and CERK). Successful local replication for associations with variants in GALC, SMPD1, and CERS6 was demonstrated in both replication cohorts. Variants rs35785620, rs143078230, rs398607, and rs1805078, associated with ADHD in the discovery or replication cohorts, correspond to missense mutations with predicted deleterious effects. Expression quantitative trait loci analysis revealed an association between rs398607 and increased GALC expression in the cerebellum.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Child , Genetic Predisposition to Disease , Humans , Mutation , Polymorphism, Single Nucleotide , Sphingolipids , Sphingomyelin Phosphodiesterase
17.
Front Neurol ; 11: 618419, 2020.
Article in English | MEDLINE | ID: mdl-33519700

ABSTRACT

Therapeutic hypothermia (HT) is a currently accepted treatment for neonatal asphyxia and is a promising strategy in adult stroke therapy. We previously reported that acute administration of docosahexaenoic acid (DHA) triglyceride emulsion (tri-DHA) protects against hypoxic-ischemic (HI) injury in neonatal mice. We questioned if co-treatment with HT and tri-DHA would achieve synergic effects in protecting the brain from HI injury. Neonatal mice (10-day old) subjected to HI injury were placed in temperature-controlled chambers for 4 h of either HT (rectal temperature 31-32°C) or normothermia (NT, rectal temperature 37°C). Mice were treated with tri-DHA (0.375 g tri-DHA/kg bw, two injections) before and 1 h after initiation of HT. We observed that HT, beginning immediately after HI injury, reduced brain infarct volume similarly to tri-DHA treatment (~50%). Further, HT delayed 2 h post-HI injury provided neuroprotection (% infarct volume: 31.4 ± 4.1 vs. 18.8 ± 4.6 HT), while 4 h delayed HT did not protect against HI insult (% infarct volume: 30.7 ± 5.0 vs. 31.3 ± 5.6 HT). HT plus tri-DHA combination treatment beginning at 0 or 2 h after HI injury did not further reduce infarct volumes compared to HT alone. Our results indicate that HT offers similar degrees of neuroprotection against HI injury compared to tri-DHA treatment. HT can only be provided in tertiary care centers, requires intense monitoring and can have adverse effects. In contrast, tri-DHA treatment may be advantageous in providing a feasible and effective strategy in patients after HI injury.

19.
Nutrients ; 10(8)2018 Aug 18.
Article in English | MEDLINE | ID: mdl-30126177

ABSTRACT

This study was carried out among Palestinian refugee women in the West Bank to provide data on the prevalence of metabolic syndrome (MetS) and its correlates. Data were obtained from a cross-sectional study of 1694 randomly selected refugee women from the United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) health centers throughout the West Bank during June and July 2010. In this cohort, 30% of the refugee women were overweight, 39% were obese, and 7% were extremely obese. Based on World Health Organization (WHO) criteria, the age-adjusted prevalence of MetS was 19.8%. The results of the binary logistic regression analysis indicated that older age and younger marital age were significantly associated with an increased likelihood of MetS in the women. The high prevalence of obesity and MetS mandates the implementation of national policies for its prevention, notably by initiating large-scale community intervention programs for 5.2 million refugees in Palestine, Jordan, Lebanon, and Syria, to tackle obesity and increase the age at marriage.


Subject(s)
Arabs , Metabolic Syndrome/epidemiology , Obesity/epidemiology , Refugees , Adolescent , Adult , Aged , Aged, 80 and over , Blood Glucose/metabolism , Body Mass Index , Cholesterol/blood , Cross-Sectional Studies , Female , Humans , Jordan/epidemiology , Lebanon/epidemiology , Middle Aged , Prevalence , Socioeconomic Factors , Waist Circumference , Young Adult
20.
Arterioscler Thromb Vasc Biol ; 38(3): 509-519, 2018 03.
Article in English | MEDLINE | ID: mdl-29371243

ABSTRACT

OBJECTIVE: Tissue macrophages induce and perpetuate proinflammatory responses, thereby promoting metabolic and cardiovascular disease. Lipoprotein lipase (LpL), the rate-limiting enzyme in blood triglyceride catabolism, is expressed by macrophages in atherosclerotic plaques. We questioned whether LpL, which is also expressed in the bone marrow (BM), affects circulating white blood cells and BM proliferation and modulates macrophage retention within the artery. APPROACH AND RESULTS: We characterized blood and tissue leukocytes and inflammatory molecules in transgenic LpL knockout mice rescued from lethal hypertriglyceridemia within 18 hours of life by muscle-specific LpL expression (MCKL0 mice). LpL-deficient mice had ≈40% reduction in blood white blood cell, neutrophils, and total and inflammatory monocytes (Ly6C/Ghi). LpL deficiency also significantly decreased expression of BM macrophage-associated markers (F4/80 and TNF-α [tumor necrosis factor α]), master transcription factors (PU.1 and C/EBPα), and colony-stimulating factors (CSFs) and their receptors, which are required for monocyte and monocyte precursor proliferation and differentiation. As a result, differentiation of macrophages from BM-derived monocyte progenitors and monocytes was decreased in MCKL0 mice. Furthermore, although LpL deficiency was associated with reduced BM uptake and accumulation of triglyceride-rich particles and macrophage CSF-macrophage CSF receptor binding, triglyceride lipolysis products (eg, linoleic acid) stimulated expression of macrophage CSF and macrophage CSF receptor in BM-derived macrophage precursor cells. Arterial macrophage numbers decreased after heparin-mediated LpL cell dissociation and by genetic knockout of arterial LpL. Reconstitution of LpL-expressing BM replenished aortic macrophage density. CONCLUSIONS: LpL regulates peripheral leukocyte levels and affects BM monocyte progenitor differentiation and aortic macrophage accumulation.


Subject(s)
Aorta/enzymology , Aortic Diseases/enzymology , Atherosclerosis/enzymology , Hyperlipoproteinemia Type I/enzymology , Lipoprotein Lipase/deficiency , Macrophages/enzymology , Monocytes/enzymology , Myeloid Progenitor Cells/enzymology , Myelopoiesis , Animals , Aorta/pathology , Aortic Diseases/blood , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Proliferation , Cytokines/metabolism , Diet, High-Fat , Disease Models, Animal , Hyperlipoproteinemia Type I/blood , Hyperlipoproteinemia Type I/genetics , Hyperlipoproteinemia Type I/pathology , Intercellular Signaling Peptides and Proteins/metabolism , Lipoprotein Lipase/genetics , Macrophages/pathology , Mice, Knockout , Monocytes/pathology , Myeloid Progenitor Cells/pathology , Signal Transduction , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...