Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(22): e2311065, 2024 May.
Article in English | MEDLINE | ID: mdl-38319023

ABSTRACT

Rechargeable aqueous zinc-air batteries (ZABs) promise high energy density and safety. However, the use of conventional zinc anodes affects the energy output from the battery, so that the theoretical energy density is not achievable under operation conditions. A large portion of the zinc is shielded by anode passivation during the discharge process and remains electrochemically unused, making the operation of rechargeable ZABs inefficient up to date. In a metal anode-free ZAB, there is no unnecessary excess zinc if the zinc reservoir can be precisely adjusted by electrodeposition of zinc from the electrolyte. In this respect, an anode-free battery uses the electrolyte offering a dual-mode functionality not only providing ionic conductivity but also being the source of zinc. In addition, it is shown that a defined porous anode architecture is crucial for high rechargeability in this new type of ZAB. 3D-spatially arranged carbon nanotubes as geometrically defined host structures allow a homogeneous zinc deposition from the electrolyte. Together with carbon nanohorns as an active 2e- catalyst on the cathode side, the rechargeability of this new concept reaches up to 92%.

2.
Nanoscale ; 11(2): 598-610, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30556567

ABSTRACT

Tungsten oxide nanorods were synthesized using a template assisted process. A polycarbonate membrane (pore diameter 100 nm) was vacuum infiltrated by an aqueous solution of ammonium paratungstate ((NH4)10H2W12O42·xH2O) and yielded crystalline 3D oriented WO3 nanorod arrays after template etching and calcination. By coating the nanorod arrays with carbon, a binder-free 3D WO3/C composite electrode could be fabricated, allowing capacities up to 1149, 811, 699, 559 and 253 mA h g-1 for cycles 1, 2, 20, 50 and 200 as well as a coulombic efficiency of around 99%. Moreover, as prepared WO3 nanorod structures without that specific type of carbon coating deliver capacities in a range of 200-250 mA h g-1 after 20 cycles. Finally, a full cell lithium ion battery system is fabricated. It consists of LiCoO2 nanoparticles as cathode and binder-free carbon coated 3D WO3 composite material as anode. Pre-lithiation of this 3D WO3/C composite material as pre-conditioning before full cell assembly leads to a cell capacity of almost twice of that without pre-lithiation. Discharge capacities of 111, 91, 41 and 23 mA h g-1 can be obtained for cycles 2, 20, 100 and 200 with a coulombic efficiency of around 99% in the case of the pre-lithiated 3D WO3/C composite anode.

SELECTION OF CITATIONS
SEARCH DETAIL
...