Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Lett ; 7(5): 331-338, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37829497

ABSTRACT

Intraspecific genetic diversity is a key aspect of biodiversity. Quaternary climatic change and glaciation influenced intraspecific genetic diversity by promoting range shifts and population size change. However, the extent to which glaciation affected genetic diversity on a global scale is not well established. Here we quantify nucleotide diversity, a common metric of intraspecific genetic diversity, in more than 38,000 plant and animal species using georeferenced DNA sequences from millions of samples. Results demonstrate that tropical species contain significantly more intraspecific genetic diversity than nontropical species. To explore potential evolutionary processes that may have contributed to this pattern, we calculated summary statistics that measure population demographic change and detected significant correlations between these statistics and latitude. We find that nontropical species are more likely to deviate from neutral expectations, indicating that they have historically experienced dramatic fluctuations in population size likely associated with Pleistocene glacial cycles. By analyzing the most comprehensive data set to date, our results imply that Quaternary climate perturbations may be more important as a process driving the latitudinal gradient in species richness than previously appreciated.

2.
Mol Ecol Resour ; 22(8): 2830-2842, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35748425

ABSTRACT

Patterns of genetic diversity within species contain information the history of that species, including how they have responded to historical climate change and how easily the organism is able to disperse across its habitat. More than 40,000 phylogeographic and population genetic investigations have been published to date, each collecting genetic data from hundreds of samples. Despite these millions of data points, meta-analyses are challenging because the synthesis of results across hundreds of studies, each using different methods and forms of analysis, is a daunting and time-consuming task. It is more efficient to proceed by repurposing existing data and using automated data analysis. To facilitate data repurposing, we created a database (phylogatR) that aggregates data from different sources and conducts automated multiple sequence alignments and data curation to provide users with nearly ready-to-analyse sets of data for thousands of species. Two types of scientific research will be made easier by phylogatR: large meta-analyses of thousands of species that can address classic questions in evolutionary biology and ecology, and student- or citizen- science based investigations that will introduce a broad range of people to the analysis of genetic data. phylogatR enhances the value of existing data via the creation of software and web-based tools that enable these data to be recycled and reanalysed and increase accessibility to big data for research laboratories and classroom instructors with limited computational expertise and resources.


Subject(s)
Data Aggregation , Ecology , Ecology/methods , Ecosystem , Humans , Phylogeography , Software
3.
J Hered ; 110(6): 675-683, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31283818

ABSTRACT

Most species of bats give birth to only 1 pup each year, although Eastern red bats (Lasiurus borealis) can produce up to 5 pups per litter. Offspring in a single litter have been documented to be at different stages of development, suggesting that multiple paternity occurs. We tested the null hypothesis of genetic monogamy in red bats using 6 autosomal microsatellites and 1 X-linked microsatellite from 31 parent/offspring groups for a total of 128 bats. We sampled both pregnant females and mothers with pups that were obtained from bats submitted to departments of health in Oklahoma and Texas for rabies testing. Multiple paternity was assessed using a maximum-likelihood approach, hypothesis testing, and X-linked locus exclusion. The mean polymorphic information content of our markers was high (0.8819) and combined non-exclusion probability was low (0.00027). Results from the maximum-likelihood approach showed that 22 out of 31 (71%) parent/offspring groups consisted of half siblings, hypothesis testing rejected full sibship in 61% of parent/offspring groups, and X-linked locus exclusion suggested multiple paternity in at least 12 parent/offspring groups, rejecting our hypothesis of genetic monogamy. This frequency of multiple paternity is the highest reported thus far for any bat species. High levels of multiple paternity have the potential to impact interpretations of genetic estimates of effective population size in this species. Further, multiple paternity might be an adaptive strategy to allow for increased genetic variation and large litter size, which would be beneficial to a species threatened by population declines from wind turbines.


Subject(s)
Chiroptera/genetics , Genetics, Population , Microsatellite Repeats , Paternity , Animals , Genetic Testing , Likelihood Functions
SELECTION OF CITATIONS
SEARCH DETAIL
...