Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 743: 140718, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758833

ABSTRACT

The interpretive utility of environmental magnetic proxies for investigating airborne particulate matter (PM) pollution impact is restricted by differences in soil composition, land cover and land use. For soil magnetic applications, land use strongly influences magnetic particle distribution down the soil profile, even in homogeneous soil environments. Here, an adaptive approach is engineered to provide accurate magnetic proxy information for pollution monitoring across different land use types. In an 81-km2 area between two industrial harbours, the irregular distribution of forests, arable lands, pasture and residential areas prevented robustly relating topsoil magnetic susceptibility data to known pollution impacts. Although normalized topsoil susceptibility values showed improved potential for deriving airborne pollution impacts, optimal results were obtained by depth-integrating magnetic susceptibility logs, revealing long-term impacts of both active and decommissioned industrial facilities. Complementing soil magnetic observations, active and passive (bio)magnetic monitoring allowed discriminating short-term pollution patterns and evaluating changes in PM impact across the study area. Hereby, active PM receptors (strawberry leaves and plastic coated cardboards (PCCs)) provided promising results, yet passive receptors allowed estimating pollution impacts more efficiently. For the latter, species-independent grass leaf sampling reflected airborne PM depositional patterns most accurately, whereas wiped anthropogenic surfaces proved too sensitive to wash-off.

2.
Sci Total Environ ; 685: 345-356, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176221

ABSTRACT

Soil magnetic measurements are used increasingly to estimate the impact of airborne, combustion-related particulate matter (PM) pollution in dense measurement grids. Although many studies have proven the potential of topsoil magnetic measurements in environmental monitoring, their application is not straightforward when factors such as parent material or land use have to be accounted for. Often, the influence of land use on the soil magnetic signal is circumvented by targeting forest soils, where deposited magnetic particles are best preserved in the topsoil. However, when large forests are absent, e.g. in densely populated areas or environments with more heterogeneous land use, this approach often impedes reliable and comprehensive spatial sampling. We evaluated if topsoil magnetic pollution mapping across different land use classes, against a homogeneous geological environment of sandy soils, could help increase the spatial reliability of results in regional scale surveys. Although detailed magnetic property analysis and evaluation of trace metal concentrations in soils on arable land, forest and pasture showed the impact of atmospheric pollution, topsoil susceptibility measurements did not allow delineating the magnetic footprint of PM pollution. Land use strongly influenced the distribution of magnetic particles through soil, and the evaluation of anomalous magnetic topsoil enhancement required the integration of downhole susceptibility soundings. We conclude that topsoil susceptibility mapping remains a useful tool to evaluate PM pollution impact, yet its application potential across land use classes is limited.

SELECTION OF CITATIONS
SEARCH DETAIL
...