Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part A ; 27(7-8): 500-511, 2021 04.
Article in English | MEDLINE | ID: mdl-33797977

ABSTRACT

The development of resistance to therapy is a significant obstacle to effective therapeutic regimens. Evaluating the effects of oncology drugs in the laboratory setting is limited by the lack of translational models that accurately recapitulate cell-microenvironment interactions present in tumors. Acquisition of resistance to therapy is facilitated, in part, by the composition of the tumor extracellular matrix (ECM), with the primary current in vitro model using collagen I (COL I). Here we seek to identify the prevalence of COL I-enhanced expression in the triple-negative breast cancer (TNBC) subtype. Furthermore, we identify if methods of response to therapy are altered depending on matrix composition. We demonstrated that collagen content varies in patient tumor samples across subtypes, with COL I expression dramatically increased in typically less aggressive estrogen receptor (ER)-positive(ER+)/progesterone receptor (PGR)-positive (PGR+) cancers irrespective of patient age or race. These findings are of significance considering how frequently COL I is implicated in tumor progression. In vitro analyses of ER+ and ER-negative (ER-) cell lines were used to determine the effects of ECM content (collagen I, collagen IV, fibronectin, and laminin) on proliferation, cellular phenotype, and survival. Neither ER+ nor ER- cells demonstrated significant increases in proliferation when cultured on these ECM substrates. ER- cells cultured on these substrates were sensitized to both chemotherapy and targeted therapy. In addition, MDA-MB-231 cells expressed different morphologies, binding affinities, and stiffness across these substrates. We also demonstrated that ECM composition significantly alters transcription of senescence-associated pathways across ER+ and ER- cell lines. Together, these results suggest that complex matrix composites should be incorporated into in vitro tumor models, especially for the drug-resistant TNBC subtype. Impact statement The importance of tumor extracellular matrix (ECM) in disease progression is often inadequately represented in models of breast cancer that rely heavily on collagen I and Matrigel. Through immunohistochemistry analysis of patient breast tumors, we show a wide variation in collagen content based on subtype, specifically a repression of fibril collagens in the receptor negative subtype, irrespective of age and race. We also demonstrated that tumor ECM composition alters cellular elasticity and oncogenic pathway activation demonstrating that physiologically relevant three-dimensional models of breast cancer should include an ECM that is subtype specific.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Cell Line, Tumor , Collagen Type I , Collagen Type IV , Extracellular Matrix , Female , Humans , Tumor Microenvironment
2.
Nanoscale ; 8(9): 5334-42, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26883602

ABSTRACT

We report stable and reproducible trapping of luminescent dielectric YAG:Ce(3+) nanoparticles with sizes down to 60 nm using far-field dual fiber tip optical tweezers. The particles are synthesized by a specific glycothermal route followed by an original protected annealing step, resulting in significantly enhanced photostability. The tweezers properties are analyzed by studying the trapped particles residual Brownian motion using video or reflected signal records. The trapping potential is harmonic in the transverse direction to the fiber axis, but reveals interference fringes in the axial direction. Large trapping stiffness of 35 and 2 pN µm(-1) W(-1) is measured for a fiber tip-to-tip distance of 3 µm and 300 nm and 60 nm particles, respectively. The forces acting on the nanoparticles are discussed within the dipolar approximation (gradient and scattering force contributions) or exact calculations using the Maxwell Stress Tensor formalism. Prospects for trapping even smaller particles are discussed.

3.
Appl Opt ; 52(26): 6620-5, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24085141

ABSTRACT

The optical transmission and reflection in between two metalized optical fiber tips is studied in the optical near-field and far-field domains. In addition to aluminum-coated tips for near-field scanning optical microscopy (NSOM), specifically developed gold-coated fiber tips cut by focused ion beam are investigated. Transverse transmission maps of subwavelength width clearly indicate optical near-field coupling between the tips for short tip distances and become essentially Gaussian-shaped for larger distances in the far-field regime. Moreover, concentric reflection fringes observed for NSOM-type tips illustrate the influence of the receiving fiber tip on the emission pattern of the source tip.

4.
Opt Express ; 21(25): 30521-31, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514629

ABSTRACT

An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.


Subject(s)
Nanotechnology/instrumentation , Optical Tweezers , Transducers , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Models, Theoretical
5.
Opt Express ; 19(3): 2702-10, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369091

ABSTRACT

We report on the imaging of biological cells including living neurons by a dedicated fibered interferometric scanning optical microscope. The topography and surface roughness of mouse fibroblasts and hippocampal neurons are clearly revealed. This straightforward far-field technique allows fast, high resolution observation of samples in liquids without lengthy alignment procedures or costly components.


Subject(s)
Fiber Optic Technology/instrumentation , Fibroblasts/cytology , Image Enhancement/instrumentation , Microscopy, Confocal/instrumentation , Microscopy, Interference/instrumentation , Neurons/cytology , Animals , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...