Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 20(12): 2797-2809, 2022 12.
Article in English | MEDLINE | ID: mdl-36128768

ABSTRACT

BACKGROUND: Acquired von Willebrand syndrome (aVWS) is common in patients with mechanical circulatory support (MCS) devices. In these patients, the high shear stress in the device leads to increased shear-induced proteolysis of von Willebrand factor (VWF) by A Disintegrin And Metalloprotease with Thrombospondin type 1 repeats, number 13 (ADAMTS13). As a result, the high molecular weight (HMW) VWF multimers are lost, leading to a decreased VWF function and impaired hemostasis that could explain the bleeding complications that are frequently observed in these patients. To counteract this abnormal VWF degradation by ADAMTS13, we developed a novel targeted therapy, using an anti-ADAMTS13 monoclonal antibody (mAb) that inhibits the shear-induced proteolysis of VWF by ADAMTS13. METHODS: Human or bovine blood was circulated through in vitro MCS device systems with either inhibitory anti-ADAMTS13 mAb 3H9 or 17C7 (20 µg/ml) or control anti-ADAMTS13 mAb 5C11 or phosphate buffered saline (PBS). VWF multimers and function (collagen binding activity) were determined at different time points. Next, Impella pumps were implanted in calves and the calves were injected with PBS and subsequently treated with mAb 17C7. VWF, ADAMTS13, and blood parameters were determined. RESULTS: We demonstrated that blocking ADAMTS13 could prevent the loss of HMW VWF multimers in in vitro MCS device systems. Importantly, our antibody could reverse aVWS in a preclinical Impella-induced aVWS calf model. CONCLUSION: Hence, inhibition of ADAMTS13 could become a novel therapeutic strategy to manage aVWS in MCS device patients.


Subject(s)
Heart-Assist Devices , von Willebrand Diseases , Animals , Cattle , Humans , von Willebrand Factor/metabolism , ADAMTS13 Protein , Heart-Assist Devices/adverse effects , Hemostasis , Collagen
2.
Blood Adv ; 5(17): 3478-3491, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34505883

ABSTRACT

Trauma-induced organ failure is characterized by endothelial dysfunction. The aim of this study was to investigate the role of von Willebrand factor (VWF) and its cleaving enzyme, ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13) in the occurrence of endothelial permeability and organ failure in trauma. In an observational study in a level-1 trauma center, 169 adult trauma patients with clinical signs of shock and/or severe injuries were included. Trauma was associated with low ADAMTS13 and high VWF antigen levels, thus generating an imbalance of ADAMTS13 to VWF. Patients who developed organ failure (23%) had greater ADAMTS13-to-VWF imbalances, persistently lower platelet counts, and elevated levels of high-molecular-weight VWF multimers compared with those without organ failure, suggesting microthrombi formation. To investigate the effect of replenishing low ADAMTS13 levels on endothelial permeability and organ failure using either recombinant human ADAMTS13 (rhADAMTS13) or plasma transfusion, a rat model of trauma-induced shock and transfusion was used. Rats in traumatic hemorrhagic shock were randomized to receive crystalloids, crystalloids supplemented with rhADAMTS13, or plasma transfusion. A 70-kDa fluorescein isothiocyanate-labeled dextran was injected to determine endothelial leakage. Additionally, organs were histologically assessed. Both plasma transfusion and rhADAMTS13 were associated with a reduction in pulmonary endothelial permeability and organ injury when compared with resuscitation with crystalloids, but only rhADAMTS13 resulted in significant improvement of a trauma-induced decline in ADAMTS13 levels. We conclude that rhADAMTS13 and plasma transfusion can reduce organ failure following trauma. These findings implicate the ADAMTS13-VWF axis in the pathogenesis of organ failure.


Subject(s)
Thrombosis , von Willebrand Factor , ADAMTS13 Protein , Animals , Blood Component Transfusion , Humans , Plasma , Rats
4.
Res Pract Thromb Haemost ; 2(4): 762-766, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30397685

ABSTRACT

BACKGROUND: Patients with von Willebrand disease (VWD) type 2A or acquired von Willebrand syndrome (aVWS) as a consequence of implantation of left ventricular assist devices (LVAD) are both characterized by a loss of von Willebrand factor (VWF) function. Loss of VWF function is however more severe in VWD type 2A than in LVAD patients. OBJECTIVES: To compare VWF function in patients with VWD type 2A and LVAD-induced aVWS to highlight the differences in VWF activity and to stress the importance of VWF multimer analysis for correct diagnosis of aVWS in LVAD patients. PATIENTS/METHODS: Plasma samples from nine VWD type 2A, nine LVAD patients, and 20 healthy donors (HD) were analyzed for VWF function (VWF:CB/VWF:Ag and VWF:RCo/VWF:Ag) and loss of high molecular weight (HMW) VWF multimers. RESULTS: A severely impaired VWF function was indeed confirmed in all VWD 2A patients. HMW VWF multimers were severely reduced compared to HD (0% [0, 12.29] vs 34.19% [31.68, 38.88] for HD, P < 0.001) and this loss was reflected by VWF:CB/VWF:Ag and VWF:RCo/VWF:Ag ratios <0.7. In contrast, VWF function was less affected in LVAD patients. Although HMW VWF multimers were reduced in all patients (20.31% [15.84, 21.71], vs 34.19% [31.68, 38.88] for HD, P < 0.001), six out of nine LVAD patients had normal VWF:CB/VWF:Ag or VWF:RCo/VWF:Ag ratios (>0.7). CONCLUSIONS: VWF:CB/VWF:Ag or VWF:RCo/VWF:Ag analysis allows detection of impaired VWF function in VWD type 2A but not always in LVAD-induced aVWS patients. In contrast, VWF multimeric analysis allows detection of the loss of HMW VWF multimers in both groups of patients. Hence, performing VWF multimer analysis is crucial to detect aVWS in LVAD patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...