Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Reprod ; 64(1): 331-8, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11133691

ABSTRACT

Calcitonin gene-related peptide (CGRP) is a vasodilatory peptide, and it is primarily synthesized in dorsal root ganglia (DRG). Plasma CGRP levels increase during pregnancy and with steroid hormones, and nerve growth factor (NGF) stimulates calcitonin/CGRP promoter and CGRP synthesis in DRG. We previously showed that CGRP levels in DRG were stimulated with steroid hormone treatments in vivo but not in vitro. Thus, the stimulation of CGRP by these hormones may be indirect through the upregulation of NGF effects. We hypothesized that the female sex steroid hormones upregulate NGF receptors, trkA and p75(NTR), in DRG. We examined the effects of 17 beta-estradiol (E(2)) and progesterone (P(4)) on NGF receptors in DRG obtained from ovariectomized (ovx) rats. Groups of 4 ovx rats were injected s.c. with 5 microg E(2), 4 mg P(4), or 5 microg E(2) + 4 mg P(4) in 0.2 ml sesame oil or injected with oil only and were killed at 6, 24, and 48 h. In addition, ovx rats were also injected s.c. with varying doses (0.2, 1.0, 5.0, 25 microg) of E(2) (0.5, 1.5, 4, 10 mg) P(4), and (5 microg) E(2) + (0.5, 1.5, 4.0, 10 mg) P(4) in 0.2 ml sesame oil, or vehicle, and killed at 6 (for E(2)) or 24 (for P(4) and E(2) + P(4)) h. Furthermore, groups of ovx rats were also killed at 12 and 24 h; 3 and 7 days; 2, 4, and 6 wk after ovariectomy. The DRGs were collected from all groups and then processed for Western immunoblotting to examine both trkA and p75(NTR) levels. Estradiol increased trkA at 6 h but not p75(NTR). Progesterone caused upregulation of trkA and p75(NTR) at 6 and 24 h. 17 beta-Estradiol + P(4) increased trkA at 6 and 24 h and p75(NTR) at all time points examined. One microgram of E(2) increased trkA but did not affect p75(NTR) levels. Progesterone at 4 and 10 mg upregulated trkA but only 10 mg P(4) increased p75(NTR). Five micrograms of E(2) coinjected with P(4) at 1.5 and 4 mg increased trkA, while p75(NTR) receptor was upregulated when coinjected with P(4) at 1.5 to 10 mg. The ovariectomy caused a decrease in trkA receptors compared to proestrus rats, and these decreases were significant by 6 wk, but surprisingly p75(NTR) increased at 2 wk after ovariectomy. 17 beta-Estradiol increased trkA but not p75(NTR) receptors in DRG, whereas P(4) caused increases in both trkA and p75(NTR) in DRG. In addition, the combination of these steroid hormones had more effect on both receptors than either hormone alone. Thus, we concluded that high levels of female steroid hormones such as those due to pregnancy or hormonal replacement therapy could increase NGF receptor expression in DRG that carry more NGF to elevate the CGRP synthesis in these groups. We suggested that the regulation of NGF receptors by ovarian steroids may underlie steroidal regulation of other factors such as CGRP.


Subject(s)
Estradiol/pharmacology , Ganglia, Spinal/metabolism , Progesterone/pharmacology , Receptor, Nerve Growth Factor/drug effects , Animals , Blotting, Western , Calcitonin Gene-Related Peptide/biosynthesis , Female , Ovariectomy , Rats , Rats, Sprague-Dawley , Receptor, Nerve Growth Factor/physiology , Receptor, trkA/analysis , Receptors, Nerve Growth Factor/analysis , Up-Regulation/drug effects
2.
J Anat ; 197 Pt 4: 543-51, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11197527

ABSTRACT

Age-associated neurodegenerative diseases such as Alzheimer's disease are characterised by neuronal impairment that leads to cognitive deficits. As certain affected neurons depend on trophic factors such as neurotrophins (NTs), impairment in NT function has been suggested to be a component of neuronal damage associated with such disorders. Age-related neurodegenerative diseases are also characterised by high levels of proinflammatory cytokines such as tumour necrosis factor alpha (TNFalpha) in the CNS. Because TNFalpha receptors and certain NT receptors share a high degree of homology and are capable of activating similar signalling pathways, one possibility is that altered cytokine levels may affect NT function in the aged or diseased CNS. Here we wish briefly to review the evidence suggesting a role for cytokine and NT in the onset of age-associated neurodegenerative diseases. We propose that cytokine/NT interactions may alter neuronal homeostasis, thus possibly contributing to some of the neuronal degeneration occurring during such age-associated CNS diseases.


Subject(s)
Alzheimer Disease/metabolism , Central Nervous System/metabolism , Nerve Growth Factors/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Aged , Aged, 80 and over , Aging , Homeostasis , Humans , Neurons/metabolism , Receptors, Nerve Growth Factor/metabolism , Receptors, Tumor Necrosis Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...