Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 121: 104498, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637069

ABSTRACT

Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.


Subject(s)
Bacillus , Laurates , Monoglycerides , Monoglycerides/pharmacology , Monoglycerides/chemistry , Acids , Lauric Acids/pharmacology , Carbon
2.
Food Res Int ; 109: 288-297, 2018 07.
Article in English | MEDLINE | ID: mdl-29803452

ABSTRACT

In foodstuffs, physico-chemical interactions and/or physical constraints between spores, inhibitors and food components may exist. Thus, the objective of this study was to investigate such interactions using a model emulsion as a microbial medium in order to improve bacterial spore control with better knowledge of the interactions in the formulation. Emulsions were prepared with hexadecane mixed with nutrient broth using sonication and were stabilized by Tween 80 and Span 80. The hexadecane ratio was either 35% (v/v) or 50% (v/v) and each emulsion was studied in the presence of organic acid (acetic, lactic or hexanoic) at two pH levels (5.5 and 6). Self-diffusion coefficients of emulsion components and the organic acids were measured by Pulsed Field Gradient-Nuclear Magnetic Resonance (PFG-NMR). The inhibition effect on the spore germination and cell growth of Bacillus weihenstephanensis KBAB4 was characterized by the measure of the probability of growth using the most probable number methodology, and the measure of the time taken for the cells to germinate and grow using a single cell Bioscreen® method and using flow cytometry. The inhibition of spore germination and growth in the model emulsion depended on the dispersed phase volume fraction and the pH value. The effect of the dispersed phase volume fraction was due to a combination of (i) the lipophilicity of the biocide, hexanoic acid, that may have had an impact on the distribution of organic acid between hexadecane and the aqueous phases and (ii) the antimicrobial activity of the emulsifier Tween 80 detected at the acidic pH value. The interface phenomena seemed to have a major influence. Future work will focus on the exploration of these phenomena at the interface.


Subject(s)
Acids/chemistry , Bacillus/growth & development , Polysorbates/chemistry , Spores, Bacterial/growth & development , Acetic Acid/chemistry , Bacillus/classification , Bacteriological Techniques , Caproates/chemistry , Electrophoresis, Gel, Pulsed-Field , Emulsions , Flow Cytometry , Food Microbiology/methods , Hexoses/chemistry , Hydrogen-Ion Concentration , Kinetics , Lactic Acid/chemistry , Spores, Bacterial/classification
3.
Food Microbiol ; 57: 1-7, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27052695

ABSTRACT

Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 µM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes.


Subject(s)
1-Octanol/metabolism , Antifungal Agents/metabolism , Penicillium/metabolism , Spores, Fungal/growth & development , 1-Octanol/analysis , Antifungal Agents/analysis , Cheese/microbiology , Gas Chromatography-Mass Spectrometry , Penicillium/growth & development , Spores, Fungal/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
4.
J Agric Food Chem ; 55(12): 4835-41, 2007 Jun 13.
Article in English | MEDLINE | ID: mdl-17508756

ABSTRACT

The effects of thickeners on the headspace release of aroma compounds from a model dairy gel were investigated. Starch, pectin, and locust bean gum (LBG) were introduced separately to the fat-free dairy gel via sugar syrups. The release of nine aroma compounds was analyzed by solid-phase microextraction (SPME), and the partition coefficients of retention were calculated. For an increase in starch concentration, there was an overall decrease in aroma release. Pectin concentrations in gel higher than 0.04% caused an increase in aroma release. For LBG no major effect was observed. A quantitative structure-property relationship (QSPR) approach was used to propose which types of interactions were involved between aroma molecules and thickener macromolecules in the complex foodstuff. Twenty molecular descriptors of volatile compounds appeared to be significant in correlation with the partition coefficients of retention. The surface-weighted negatively charged partial surface area seemed to play a critical role in the behavior of aroma compound.


Subject(s)
Dairying , Food Additives , Gels/chemistry , Alcohols/analysis , Carboxylic Acids/analysis , Food-Processing Industry , Odorants , Pectins , Plant Gums , Starch
5.
J Agric Food Chem ; 52(10): 3077-82, 2004 May 19.
Article in English | MEDLINE | ID: mdl-15137856

ABSTRACT

The influence of storage on the aroma release in headspace and rheological properties in strawberry-flavored fatfree stirred yogurts was determined. Three periods of storage at 10 degrees C were chosen for analysis: 7, 14, and 28 days. The headspace composition was assessed in a flask in static mode. The SPME fiber was carefully chosen, and results are presented in detail (choice and degradation). The flow properties of the final product were measured in order to follow n (flow behavior index) and K (consistency index), and the apparent viscosity was determined (eta in Pa.s). The quantity of flavors in the headspace of products at the 28 days of aging was significantly weaker for methyl 2-methyl butanoate, ethyl hexanoate, and hexyl acetate. The decrease was half of that in comparison with the seventh day. It was supposed that modification in rheological parameters can partly explain these results. Indeed, the apparent viscosity of the products significantly increased during the three times of storage. The composition of the flavored yogurt, proteins, exopolysaccharides, and fruit preparation, seemed to have a great impact on the release of aroma compounds. The aroma compound amount in the headspace decreased when the matrix changed from water to yogurt. With the fruit preparation, the headspace amounts for esters were significantly lower than in water alone, respectively, 23, 27, 29, and 17% less for methyl 2-methylbutanoate, ethyl hexanoate, hexyl acetate, and benzyl acetate. In flavored yogurt, the amount of aroma compounds in the headspace decreased again in comparison with the result obtained with the fruit preparation. Ethyl hexanoate and hexyl acetate presented the higher decreases of 48 and 53%, respectively.


Subject(s)
Food Preservation , Fragaria , Fruit , Odorants/analysis , Yogurt/analysis , Chromatography, Gas , Rheology , Time Factors , Viscosity
6.
J Agric Food Chem ; 52(5): 1277-80, 2004 Mar 10.
Article in English | MEDLINE | ID: mdl-14995133

ABSTRACT

A detailed study of the rheological behavior of pectin gels, in the presence of aroma compounds in food concentration is reported. In high methoxylated pectin (HMP) gels, it has not yet been shown if aroma compounds can be responsible for modifications in rheology. Two rheological techniques were used to measure the impact of aroma substances on rheological properties of HMP-based systems. Maximum strain to fracture (sigma F) was compared between flavored and unflavored gels on stress-displacement curve, which was obtained with uniaxial compression until fracture. An oscillatory rheometer was applied to determine the gelation time (Tgel). It appeared that all the aroma compounds studied increased significantly sigma F. It is generally acknowledged that hydrophobic interactions are the main interactions leading to HMP gelation, and the more hydrophobic interactions there are, the higher the sigma F. It is assumed that esters might increase sigma F through the increase of hydrophobic interactions in HMP network. For solvents (ethanol, propylene glycol), a cosolute effect could explain the increase in firmness for HMP-based gels.


Subject(s)
Gels/chemistry , Odorants , Pectins/chemistry , Food Analysis , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...