Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gerontol A Biol Sci Med Sci ; 77(1): 47-54, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34406381

ABSTRACT

The aim of the study was to evaluate the association between physical activity, knee extensors (KE) performance (ie, isometric strength and fatigability), and biological parameters (ie, muscle structural, microvascular, and metabolic properties) in healthy very old men and women. Thirty very old adults (82 ± 1 years, 15 women) performed an isometric Quadriceps Intermittent Fatigue (QIF) test for the assessment of KE maximal force, total work (index of absolute performance), and fatigability. Muscle biopsies from the vastus lateralis muscle were collected to assess muscle fibers type and morphology, microvasculature, and enzymes activity. Correlation analyses were used to investigate the relationships between physical activity (steps/day, actimetry), KE performance, and biological data for each sex separately. Men, compared to women, showed greater total work at the QIF test (44 497 ± 8 629 Ns vs 26 946 ± 4 707 Ns; p < .001). Steps per day were correlated with total work only for women (r = 0.73, p = .011). In men, steps per day were correlated with the percentage (r = 0.57, p = .033), shape factor (r = 0.75, p = .002), and capillary tortuosity of type IIX fibers (r = 0.59, p = .035). No other relevant correlations were observed for men or women between steps per day and biological parameters. Physical activity level was positively associated with the capacity of very old women to perform a fatiguing test, but not maximal force production capacity of the KE. Physical activity of very old men was not correlated with muscle performance. We suggest that very old women could be at higher risk of autonomy loss and increasing the steps per day count could provide a sufficient stimulus for adaptations in less active women.


Subject(s)
Muscle Fatigue , Quadriceps Muscle , Exercise/physiology , Female , Humans , Isometric Contraction/physiology , Knee/physiology , Male , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology
2.
J Gerontol A Biol Sci Med Sci ; 74(5): 608-615, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30137216

ABSTRACT

Characterizations of the multiple mechanisms determining biological aging are required to better understand the etiology and identify early biomarkers of sarcopenia. Oxylipins refer to a large family of signaling lipids involved in the regulation of various biological processes that become dysregulated during aging. To investigate whether comprehensive oxylipin profiling could provide an integrated and fine characterization of the early phases of sarcopenia, we performed a quantitative targeted metabolomics of oxylipins in plasma of 81-year-old subjects from the PROOF cohort with decreased (n = 12), stable (n = 16), or increased appendicular muscle mass (n = 14). Multivariate and univariate analyses identified significant and concordant changes of oxylipin profiles according to the muscle status. Of note, 90% of the most discriminant oxylipins were derived from EPA and DHA and were increased in the sarcopenic subjects. The oxylipins signatures of sarcopenic subjects revealed subtle activation of inflammatory resolution pathways, coagulation processes, and oxidative stress as well as the inhibition of angiogenesis. Heat maps highlighted relationships between oxylipins and the cardiometabolic health parameters which were mainly lost in sarcopenic subjects. This exploratory study supports that targeted metabolomics of oxylipins could provide relevant and subtle characterization of early disturbances associated with muscle loss during aging.


Subject(s)
Aging , Oxylipins/blood , Sarcopenia/blood , Absorptiometry, Photon , Aged, 80 and over , Biomarkers/blood , Female , Humans , Longitudinal Studies , Male , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...