Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(9): 6601-6609, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28203657

ABSTRACT

Layered vanadium oxides have been extensively explored due to their interesting metal-insulator transitions and energy conversion/storage applications. In the present study, we have successfully synthesized VO2 (A) polymorph powder samples by a single-step hydrothermal synthesis process and consolidated them using spark plasma sintering. The structural and electronic properties of VO2 (A) are measured over a large temperature range from liquid helium, across the structural transition (400-440 K) and up to 500 K. The structural analysis around this transition reveals an antiferrodistorsive to partially ferrodistorsive ordering upon cooling. It is followed by a progressive antiferromagnetic spin pairing which fully settles at about 150 K. The transport measurements show that, in contrast to the rutile archetype VO2 (R/M1), the structural transition comes with a transition from semiconductor to band-type insulator. Under these circumstances, we propose a scenario with a high temperature antiferrodistorsive paramagnetic semiconducting phase, followed by an intermediate regime with a partially ferrodistorsive paramagnetic semiconducting phase, and finally a low temperature partially ferrodistorsive antiferromagnetic band insulator phase with a possible V-V Peierls-type pairing.

2.
Rev Sci Instrum ; 86(1): 011301, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25638064

ABSTRACT

A round robin test aiming at measuring the high-temperature thermoelectric properties was carried out by a group of European (mainly French) laboratories (labs). Polycrystalline skutterudite Co0.97Ni0.03Sb3 was characterized by Seebeck coefficient (8 labs), electrical resistivity (9 labs), thermal diffusivity (6 labs), mass volume density (6 labs), and specific heat (6 labs) measurements. These data were statistically processed to determine the uncertainty on all these measured quantities as a function of temperature and combined to obtain an overall uncertainty on the thermal conductivity (product of thermal diffusivity by density and by specific heat) and on the thermoelectric figure of merit ZT. An increase with temperature of all these uncertainties is observed, in agreement with growing difficulties to measure these quantities when temperature increases. The uncertainties on the electrical resistivity and thermal diffusivity are most likely dominated by the uncertainty on the sample dimensions. The temperature-averaged (300-700 K) relative standard uncertainties at the confidence level of 68% amount to 6%, 8%, 11%, and 19% for the Seebeck coefficient, electrical resistivity, thermal conductivity, and figure of merit ZT, respectively. Thermal conductivity measurements appear as the least accurate. The moderate value of the temperature-averaged relative expanded (confidence level of 95%) uncertainty of 17% on the mean of ZT is essential in establishing Co0.97Ni0.03Sb3 as a high temperature standard n-type thermoelectric material.

SELECTION OF CITATIONS
SEARCH DETAIL
...