Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Membr Biol ; 16(3): 237-46, 1999.
Article in English | MEDLINE | ID: mdl-10503245

ABSTRACT

Fusogenic peptides belong to a class of helical amphipathic peptides characterized by a hydrophobicity gradient along the long helical axis. According to the prevailing theory regarding the mechanism of action of fusogenic peptides, this hydrophobicity gradient causes the tilted insertion of the peptides in membranes, thus destabilizing the lipid core and, thereby, enhancing membrane fusion. To assess the role of the hydrophobicity gradient upon the fusogenic activity, two of these fusogenic peptides and several variants were synthesized. The LCAT-(57-70) peptide, which is part of the sequence of the lipolytic enzyme lecithin cholesterol acyltransferase, forms stable beta-sheets in lipids, while the apolipoprotein A-II (53-70) peptide remains predominantly helical in membranes. The variant peptides were designed through amino acid permutations, to be either parallel, perpendicular, or to retain an oblique orientation relative to the lipid-water interface. Peptide-induced vesicle fusion was monitored by lipid-mixing experiments, using fluorescent probes, the extent of peptide-lipid association, the conformation of lipid-associated peptides and their orientation in lipids, were studied by Fourier Transformed Infrared Spectroscopy. A comparison of the properties of the wild-type and variant peptides shows that the hydrophobicity gradient, which determines the orientation of helical peptides in lipids and their fusogenic activity, further influences the secondary structure and lipid binding capacity of these peptides.


Subject(s)
Membrane Proteins/chemistry , Phosphatidylcholine-Sterol O-Acyltransferase/chemistry , Protein Structure, Secondary , Amino Acid Sequence , Lipid Bilayers , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Structure-Activity Relationship
2.
Protein Eng ; 12(1): 71-8, 1999 Jan.
Article in English | MEDLINE | ID: mdl-10065713

ABSTRACT

Lecithin cholesterol acyltransferase (LCAT) is an interfacial enzyme active on both high-density (HDL) and low-density lipoproteins (LDL). Threading alignments of LCAT with lipases suggest that residues 50-74 form an interfacial recognition site and this hypothesis was tested by site-directed mutagenesis. The (delta56-68) deletion mutant had no activity on any substrate. Substitution of W61 with F, Y, L or G suggested that an aromatic residue is required for full enzymatic activity. The activity of the W61F and W61Y mutants was retained on HDL but decreased on LDL, possibly owing to impaired accessibility to the LDL lipid substrate. The decreased activity of the single R52A and K53A mutants on HDL and LDL and the severer effect of the double mutation suggested that these conserved residues contribute to the folding of the LCAT lid. The membrane-destabilizing properties of the LCAT 56-68 helical segment were demonstrated using the corresponding synthetic peptide. An M65N-N66M substitution decreased both the fusogenic properties of the peptide and the activity of the mutant enzyme on all substrates. These results suggest that the putative interfacial recognition domain of LCAT plays an important role in regulating the interaction of the enzyme with its organized lipoprotein substrates.


Subject(s)
Phosphatidylcholine-Sterol O-Acyltransferase/chemistry , Candida/chemistry , Enzyme Activation , Humans , Lipase/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Pancreas/enzymology , Peptides/pharmacology , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Spectrometry, Fluorescence
3.
Biochem J ; 338 ( Pt 2): 305-10, 1999 Mar 01.
Article in English | MEDLINE | ID: mdl-10036224

ABSTRACT

The microsomal triglyceride transfer protein (MTP) complexed to protein disulphide isomerase (PDI) is obligatory for the assembly of chylomicrons and very-low-density lipoproteins. The determination of the atomic structure of the MTP-PDI heterodimer has important implications for the treatment of those forms of hyperlipidaemia associated with the overproduction of very-low-density lipoproteins, which predispose to premature coronary heart disease. To perform structural studies of the human MTP-PDI complex it was necessary to produce milligram quantities of pure protein. We chose the baculovirus expression system for this purpose. Insects cells were co-infected with recombinant viruses encoding FLAG-tagged MTP and His-tagged PDI; the resulting heterodimer was purified by affinity chromatography. From 5 litres of insect cells, 4-6 mg of more than 95% pure recombinant protein was obtained. CD and attenuated total reflection Fourier-transform infrared spectroscopy indicate that the purified protein has around 34% alpha-helical and 33% beta-structure content. The recombinant protein had a comparable triglyceride transfer activity to that of bovine MTP-PDI. The production of polyclonal antibodies raised against the MTP and PDI subunits of the purified protein is described. The present study demonstrates the feasibility of expressing two proteins at high levels in insect cells and describes a transferable methodology for the purification of the resulting protein complex.


Subject(s)
Baculoviridae/genetics , Carrier Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , COS Cells , Carrier Proteins/chemistry , Cloning, Molecular , DNA Primers , Dimerization , Humans , Microsomes/metabolism , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/genetics , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Spodoptera
4.
Eur J Biochem ; 256(3): 570-9, 1998 Sep 15.
Article in English | MEDLINE | ID: mdl-9780233

ABSTRACT

A class of peptides that associate with lipids, known as oblique-orientated peptides, was recently described [Brasseur R., Pillot, T., Lins, L., Vandekerckhove, J. & Rosseneu, M. (1997) Trends Biochem. Sci. 22, 167-171]. Due to an asymmetric distribution of hydrophobic residues along the axis of the alpha-helix, such peptides adopt an oblique orientation which can destabilise membranes or lipid cores. Variants of these oblique peptides, designed to have an homogeneous distribution of hydrophobic and hydrophilic residues along the helical axis, are classified as regular amphipathic peptides. These peptides are expected to lie parallel to the polar/apolar interface with their hydrophobic residues directed towards the apolar and their hydrophilic residues towards the polar phase. An hydrophobic, oblique-orientated peptide was identified at residues 56-68 in the sequence of the lecithin-cholesterol acyltransferase (LCAT), enzyme. This peptide is predicted to penetrate a lipid bilayer at an angle of 40 degrees through its more hydrophobic C-terminal end and thereby induce the destabilisation of a membrane or a lipid core. The LCAT-(56-68) wild-type peptide was synthesised together with the LCAT-(56-68, 0 degrees) variant, in which the hydrophobicity gradient was abolished through residue permutations. In two other variants, designed to keep their oblique orientation, the W61 residue was shifted either towards the more hydrophilic N-terminal at residue 57, or to position 68 at the hydrophobic C-terminal end of the peptide. Peptide-induced vesicle fusion was demonstrated by fluorescence measurements using pyrene-labeled vesicles and by monitoring of vesicle size by gel filtration. The interaction between peptides and lipids was monitored by measurement of the intrinsic tryptophan fluorescence emission of the peptides. Fluorescence polarisation measurements, using diphenyl hexatriene, were carried out to follow changes in the lipid fluidity. The LCAT-(56-68) wild-type peptide and the two oblique variants, induced fusion of unilamellar dimyristoylglycerophosphocholine vesicles. Tryptophan fluorescence emission measurements showed a 12-14 nm blue shift upon addition of the wild-type peptide and of the W61-->68 variant to lipids, whereas the fluorescence of the W61-->57 variant did not change significantly. This observation supports the insertion of the more hydrophobic C-terminal residues into the lipid phase, as predicted by the theoretical calculations. In contrast, the 0 degrees variant peptide had no fusogenic activity, and it associated with lipids to form small discoidal lipid/peptide complexes. The phospholipid transition temperature was decreased after addition of the wild-type, the W61-->68 and W61-->57 fusogenic peptides, whereas the opposite effect was observed with the 0 degrees variant. The behaviour of the wild-type and variant LCAT-(56-68) peptides stresses the contribution of the hydrophobicity gradient along the axis of an amphipathic peptide to the mode of association of this peptide with lipids. This parameter consequently influences the structural modifications occurring to lipids upon association with amphipathic peptides.


Subject(s)
Lipid Metabolism , Peptides/metabolism , Catalytic Domain , Chromatography, Gel , Circular Dichroism , Computer Simulation , Enzyme Activation , Hydrogen Bonding , Lipids/chemistry , Models, Molecular , Nephelometry and Turbidimetry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Phosphatidylcholine-Sterol O-Acyltransferase/chemistry , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Water
5.
Biochim Biophys Acta ; 1372(1): 102-16, 1998 Jun 24.
Article in English | MEDLINE | ID: mdl-9651495

ABSTRACT

Membrane targeting was investigated as a potential strategy to increase the fusogenic activity of an isolated fusion peptide. This was achieved by coupling the fusogenic carboxy-terminal part of the beta-amyloid peptide (Abeta, amino acids 29-40), involved in Alzheimer's disease, to a positively charged peptide (PIP2-binding peptide, PBP) interacting specifically with a naturally occurring negatively charged phospholipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). Peptide-induced vesicle fusion was spectroscopically evidenced by: (i) mixing of membrane lipids, (ii) mixing of aqueous vesicular contents, and (iii) an irreversible increase in vesicle size, at concentrations five to six times lower than the Abeta(29-40) peptide. In contrast, at these concentrations the PBP-Abeta(29-40) peptide did not display any significant activity on neutral vesicles, indicating that negatively charged phospholipids included as targets in the membranes, are required to compensate for the lower hydrophobicity of this peptide. When the alpha-helical structure of the chimeric peptide was induced by dissolving it in trifluoroethanol, an increase of the fusogenic potential of the peptide was observed, supporting the hypothesis that the alpha-helical conformation of the peptide is crucial to trigger the lipid-peptide interaction. The specificity of the interaction between PIP2 and the PBP moiety, was shown by the less efficient targeting of the chimeric peptide to membranes charged with phosphatidylserine. These data thus demonstrate that the specific properties of both the Abeta(29-40) and the PBP peptide are conserved in the chimeric peptide, and that a synergetic effect is reached through chemical linkage of these two fragments.


Subject(s)
Membrane Fusion/drug effects , Peptide Fragments/pharmacology , Dose-Response Relationship, Drug , Liposomes/chemistry , Liposomes/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Protein Binding , Protein Conformation , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology
6.
Eur J Biochem ; 253(1): 328-38, 1998 Apr 01.
Article in English | MEDLINE | ID: mdl-9578492

ABSTRACT

To assess the functional properties of apolipoprotein (apo) AII and to investigate the mechanism leading to the displacement of apo AI from native and reconstituted high-density lipoproteins (HDL and r-HDL) by apo AII, wild-type and variant apo AII peptides were synthesized. The wild-type peptides, residues 53-70 and 58-70, correspond to the C-terminal helix of apo AII and are predicted to insert at a tilted angle into a lipid bilayer. We demonstrate that both the apo AII-(53-70) peptide, and to a lesser extent the apo AII-(58-70) peptide are able to induce fusion of unilamellar lipid vesicles together with membrane leakage, and to displace apo AI from HDL and r-HDL. Two variants of the apo AII-(53-70)-wild-type (WT) peptide, designed either to be parallel to the water/lipid interface [apo AII-(53-70)-0 degrees] or to retain an oblique orientation [apo AII-(53-70)-30 degrees], were synthesized in order to test the influence of the obliquity on their fusogenic properties and ability to displace apo AI from HDL. The parallel variant did not bind lipids, due to its self-association properties. However, the apo AII-(53-70)-30 degrees variant was fusogenic and promoted the displacement of apo AI from HDL. Moreover, the extent of fusion of the apo AII-(53-70)-WT, apo AII-(58-70)-WT and apo AII-(53-70)-30 degrees peptides was related to the alpha-helical content of the lipid-bound peptides measured by infrared spectroscopy. Infrared measurements using polarized light also confirmed the oblique orientation of the helical component of the three peptides. In native and r-HDL, the tilted insertion of the C-terminal helix of apo AII resulting in a partial destabilization of the HDL external lipid layer might contribute to the displacement of apo AI by apo AII.


Subject(s)
Apolipoprotein A-II/metabolism , Apolipoprotein A-II/pharmacology , Apolipoprotein A-I/metabolism , Lipoproteins, HDL/metabolism , Membrane Fusion/drug effects , Amino Acid Sequence , Apolipoprotein A-II/chemistry , Humans , In Vitro Techniques , Liposomes , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Conformation , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...