Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(12): e80309, 2013.
Article in English | MEDLINE | ID: mdl-24386078

ABSTRACT

We employ a cellular-automata to reconstruct the land use patterns of cities that we characterize by two measures of spatial heterogeneity: (a) a variant of spatial entropy, which measures the spread of residential, business, and industrial activity sectors, and (b) an index of dissimilarity, which quantifies the degree of spatial mixing of these land use activity parcels. A minimalist and bottom-up approach is adopted that utilizes a limited set of three parameters which represent the forces which determine the extent to which each of these sectors spatially aggregate into clusters. The dispersion degrees of the land uses are governed by a fixed pre-specified power-law distribution based on empirical observations in other cities. Our method is then used to reconstruct land use patterns for the city state of Singapore and a selection of North American cities. We demonstrate the emergence of land use patterns that exhibit comparable visual features to the actual city maps defining our case studies whilst sharing similar spatial characteristics. Our work provides a complementary approach to other measures of urban spatial structure that differentiate cities by their land use patterns resulting from bottom-up dispersion and aggregation processes.


Subject(s)
City Planning , Canada , Cities , Models, Theoretical , New York City , Population Density , Population Dynamics , San Francisco , Singapore , Texas
2.
Immunol Res ; 53(1-3): 251-65, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22528121

ABSTRACT

Immunological studies frequently analyze individual components (e.g., signaling pathways) of immune systems in a reductionist manner. In contrast, systems immunology aims to give a synthetic understanding of how these components function together as a whole. While immunological research involves in vivo and in vitro experiments, systems immunology research can also be conducted in silico. With an increasing interest in systems-level studies spawned by high-throughput technologies, many immunologists are looking forward to insights provided by computational modeling and simulation. However, modeling and simulation research has mainly been conducted in computational fields, and therefore, little material is available or accessible to immunologists today. This survey is an attempt at bridging the gap between immunologists and systems immunology modeling and simulation. Modeling and simulation refer to building and executing an in silico replica of an immune system. Models are specified within a mathematical or algorithmic framework called formalism and then implemented using software tools. A plethora of modeling formalisms and software tools are reported in the literature for systems immunology. However, it is difficult for a new entrant to the field to know which of these would be suitable for modeling an immunological application at hand. This paper covers three aspects. First, it introduces the field of system immunology emphasizing on the modeling and simulation components. Second, it gives an overview of the principal modeling formalisms, each of which is illustrated with salient applications in immunological research. This overview of formalisms and applications is conducted not only to illustrate their power but also to serve as a reference to assist immunologists in choosing the best formalism for the problem at hand. Third, it lists major software tools, which can be used to practically implement models in these formalisms. Combined, these aspects can help immunologists to start experimenting with in silico models. Finally, future research directions are discussed. Particularly, we identify integrative frameworks to facilitate the coupling of different modeling formalisms and modeling the adaptation properties through evolution of immune systems as the next key research efforts necessary to further develop the multidisciplinary field of systems immunology.


Subject(s)
Allergy and Immunology , Computer Simulation , Systems Biology , Animals , Biological Evolution , Humans , Models, Immunological , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...