Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Hear ; 28: 23312165241245240, 2024.
Article in English | MEDLINE | ID: mdl-38613337

ABSTRACT

Listening to speech in noise can require substantial mental effort, even among younger normal-hearing adults. The task-evoked pupil response (TEPR) has been shown to track the increased effort exerted to recognize words or sentences in increasing noise. However, few studies have examined the trajectory of listening effort across longer, more natural, stretches of speech, or the extent to which expectations about upcoming listening difficulty modulate the TEPR. Seventeen younger normal-hearing adults listened to 60-s-long audiobook passages, repeated three times in a row, at two different signal-to-noise ratios (SNRs) while pupil size was recorded. There was a significant interaction between SNR, repetition, and baseline pupil size on sustained listening effort. At lower baseline pupil sizes, potentially reflecting lower attention mobilization, TEPRs were more sustained in the harder SNR condition, particularly when attention mobilization remained low by the third presentation. At intermediate baseline pupil sizes, differences between conditions were largely absent, suggesting these listeners had optimally mobilized their attention for both SNRs. Lastly, at higher baseline pupil sizes, potentially reflecting overmobilization of attention, the effect of SNR was initially reversed for the second and third presentations: participants initially appeared to disengage in the harder SNR condition, resulting in reduced TEPRs that recovered in the second half of the story. Together, these findings suggest that the unfolding of listening effort over time depends critically on the extent to which individuals have successfully mobilized their attention in anticipation of difficult listening conditions.


Subject(s)
Listening Effort , Pupil , Adult , Humans , Signal-To-Noise Ratio , Speech
2.
Hear Res ; 380: 1-9, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31167150

ABSTRACT

OBJECTIVE: To objectively measure speech intelligibility of individual subjects from the EEG, based on cortical tracking of different representations of speech: low-level acoustical, higher-level discrete, or a combination. To compare each model's prediction of the speech reception threshold (SRT) for each individual with the behaviorally measured SRT. METHODS: Nineteen participants listened to Flemish Matrix sentences presented at different signal-to-noise ratios (SNRs), corresponding to different levels of speech understanding. For different EEG frequency bands (delta, theta, alpha, beta or low-gamma), a model was built to predict the EEG signal from various speech representations: envelope, spectrogram, phonemes, phonetic features or a combination of phonetic Features and Spectrogram (FS). The same model was used for all subjects. The model predictions were then compared to the actual EEG of each subject for the different SNRs, and the prediction accuracy in function of SNR was used to predict the SRT. RESULTS: The model based on the FS speech representation and the theta EEG band yielded the best SRT predictions, with a difference between the behavioral and objective SRT below 1 decibel for 53% and below 2 decibels for 89% of the subjects. CONCLUSION: A model including low- and higher-level speech features allows to predict the speech reception threshold from the EEG of people listening to natural speech. It has potential applications in diagnostics of the auditory system.


Subject(s)
Acoustics , Auditory Cortex/physiology , Electroencephalography , Evoked Potentials, Auditory , Phonetics , Speech Intelligibility , Speech Perception , Speech Reception Threshold Test , Adult , Auditory Pathways/physiology , Female , Humans , Male , Predictive Value of Tests , Theta Rhythm , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...