Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 17(4): 600-610, 2023 04.
Article in English | MEDLINE | ID: mdl-36721059

ABSTRACT

Species within the genus Alcanivorax are well known hydrocarbon-degraders that propagate quickly in oil spills and natural oil seepage. They are also inhabitants of the deep-sea and have been found in several hydrothermal plumes. However, an in-depth analysis of deep-sea Alcanivorax is currently lacking. In this study, we used multiple culture-independent techniques to analyze the microbial community composition of hydrothermal plumes in the Northern Tonga arc and Northeastern Lau Basin focusing on the autecology of Alcanivorax. The hydrothermal vents feeding the plumes are hosted in an arc volcano (Niua), a rear-arc caldera (Niuatahi) and the Northeast Lau Spreading Centre (Maka). Fluorescence in situ hybridization revealed that Alcanivorax dominated the community at two sites (1210-1565 mbsl), reaching up to 48% relative abundance (3.5 × 104 cells/ml). Through 16S rRNA gene and metagenome analyses, we identified that this pattern was driven by two Alcanivorax species in the plumes of Niuatahi and Maka. Despite no indication for hydrocarbon presence in the plumes of these areas, a high expression of genes involved in hydrocarbon-degradation was observed. We hypothesize that the high abundance and gene expression of Alcanivorax is likely due to yet undiscovered hydrocarbon seepage from the seafloor, potentially resulting from recent volcanic activity in the area. Chain-length and complexity of hydrocarbons, and water depth could be driving niche partitioning in Alcanivorax.


Subject(s)
Alcanivoraceae , Alcanivoraceae/genetics , Alcanivoraceae/metabolism , Pacific Ocean , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 16S/genetics , Hydrocarbons/metabolism , Phylogeny , Seawater
2.
ISME J ; 16(6): 1479-1490, 2022 06.
Article in English | MEDLINE | ID: mdl-35082431

ABSTRACT

Hydrothermal plumes transport reduced chemical species and metals into the open ocean. Despite their considerable spatial scale and impact on biogeochemical cycles, niche differentiation of abundant microbial clades is poorly understood. Here, we analyzed the microbial ecology of two bathy- (Brothers volcano; BrV-cone and northwest caldera; NWC) and a mesopelagic (Macauley volcano; McV) plumes on the Kermadec intra-oceanic arc in the South Pacific Ocean. The microbial community structure, determined by a combination of 16S rRNA gene, fluorescence in situ hybridization and metagenome analysis, was similar to the communities observed in other sulfur-rich plumes. This includes a dominance of the vent characteristic SUP05 clade (up to 22% in McV and 51% in BrV). In each of the three plumes analyzed, the community was dominated by a different yet uncultivated chemoautotrophic SUP05 species, here, provisionally named, Candidatus Thioglobus vadi (McV), Candidatus Thioglobus vulcanius (BrV-cone) and Candidatus Thioglobus plumae (BrV-NWC). Statistical analyses, genomic potential and mRNA expression profiles suggested a SUP05 niche partitioning based on sulfide and iron concentration as well as water depth. A fourth SUP05 species was present at low frequency throughout investigated plume samples and may be capable of heterotrophic or mixotrophic growth. Taken together, we propose that small variations in environmental parameters and depth drive SUP05 niche partitioning in hydrothermal plumes.


Subject(s)
Hydrothermal Vents , Bacteria , Hydrothermal Vents/microbiology , In Situ Hybridization, Fluorescence , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Seawater/microbiology , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...