Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 133(12): 124313, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20886938

ABSTRACT

Lifetimes of the first electronic excited state (S(1)) of fluorine and methyl (o-, m-, and p-) substituted phenols and their complexes with one ammonia molecule have been measured for the 0(0) transition and for the intermolecular stretching σ(1) levels in complexes using picosecond pump-probe spectroscopy. Excitation energies to the S(1) (ππ*) and S(2) (πσ*) states are obtained by quantum chemical calculations at the MP2 and CC2 level using the aug-cc-pVDZ basis set for the ground-state and the S(1) optimized geometries. The observed lifetimes and the energy gaps between the ππ* and πσ* states show a good correlation, the lifetime being shorter for a smaller energy gap. This propensity suggests that the major dynamics in the excited state concerns an excited state hydrogen detachment or transfer (ESHD/T) promoted directly by a S(1)/S(2) conical intersection, rather than via internal conversion to the ground-state. A specific shortening of lifetime is found in the o-fluorophenol-ammonia complex and explained in terms of the vibronic coupling between the ππ* and πσ* states occurring through the out-of-plane distortion of the C-F bond.

2.
J Phys Chem A ; 114(9): 3060-6, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-19961201

ABSTRACT

The excited-state lifetimes of different vibrational levels of the 2-hydroxypyridine-ammonia complex have been recorded with the picosecond pump probe technique. These lifetimes decrease with increasing energy. The decrease of the lifetime is discussed based on the possible enol keto isomerization computed using RI-CC2 methods.


Subject(s)
Ammonia/chemistry , Computer Simulation , Pyridones/chemistry , Quantum Theory , Vibration
3.
J Chem Phys ; 130(2): 024302, 2009 Jan 14.
Article in English | MEDLINE | ID: mdl-19154023

ABSTRACT

Phenol-ammonia clusters with more than five ammonia molecules are proton transferred species in the ground state. In the present work, the excited states of these zwitterionic clusters have been studied experimentally with two-color pump probe methods on the nanosecond time scale and by ab initio electronic-structure calculations. The experiments reveal the existence of a long-lived excited electronic state with a lifetime in the 50-100 ns range, much longer than the excited state lifetime of bare phenol and small clusters of phenol with ammonia. The ab initio calculations indicate that this long-lived excited state corresponds to a biradicalic system, consisting of a phenoxy radical that is hydrogen bonded to a hydrogenated ammonia cluster. The biradical is formed from the locally excited state of the phenolate anion via an electron transfer process, which neutralizes the charge separation of the ground state zwitterion.

4.
Rapid Commun Mass Spectrom ; 20(11): 1648-52, 2006.
Article in English | MEDLINE | ID: mdl-16637002

ABSTRACT

Collision-induced dissociation, laser-induced dissociation and electron-capture dissociation are compared on a singly and doubly protonated pentapeptide. The dissociation spectrum depends on the excitation mechanism and on the charge state of the peptide. The comparison of these results with the conformations obtained from Monte Carlo simulations suggests that the de-excitation mechanism following a laser or an electron-capture excitation is related to the initial geometry of the peptide.


Subject(s)
Oligopeptides/chemistry , Oligopeptides/radiation effects , Computer Simulation , Electrons , Infrared Rays , Lasers , Models, Molecular , Monte Carlo Method , Protein Conformation , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...