Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 31(5): 1486-1496, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32298588

ABSTRACT

Polyamine and polyammonium ion conjugates are often used to direct reagents to nucleic acids based on their strong electrostatic attraction to the phosphoribose backbone. Such nonspecific interactions do not typically alter the specificity of the attached reagent, but polyammonium ions dramatically redirected the specificity of a series of quinone methide precursors. Replacement of a relatively nonspecific intercalator based on acridine with a series of polyammonium ions resulted in a surprising change of DNA products. Piperidine stable adducts were generated in duplex DNA that lacked the ability to support a dynamic cross-linking observed previously with acridine conjugates. Minor reaction at guanine N7, the site of reversible reaction, was retained by a monofunctional quinone methide-polyammonium ion conjugate, but a bisfunctional analogue designed for tandem quinone methide formation modified guanine N7 in only single-stranded DNA. The resulting intrastrand cross-links were sufficiently dynamic to rearrange to interstrand cross-links. However, no further transfer of adducts was observed in duplex DNA. An alternative design that spatially and temporally decoupled the two quinone methide equivalents neither restored the dynamic reaction nor cross-linked DNA efficiently. While di- and triammonium ion conjugates successfully enhanced the yields of cross-linking by a bisquinone methide relative to a monoammonium equivalent, alternative ligands will be necessary to facilitate the migration of cross-linking and its potential application to disrupt DNA repair.


Subject(s)
Amines/chemistry , DNA/chemistry , Indolequinones/chemistry , Acridines/chemistry , Alkylation , DNA, Single-Stranded/chemistry , Kinetics
2.
Org Biomol Chem ; 18(8): 1671-1678, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32051993

ABSTRACT

The dynamic nature of nucleic acid alkylation by simple ortho quinone methides (QM) and their conjugates has provided numerous opportunities ranging from sequence selective targeting to bipedal walking in duplex DNA. To enhance the diffusion rate of adduct migration, one of two sites for QM generation was deleted from a bisQM conjugate of acridine to remove the covalent anchor to DNA that persists during QM regeneration. This conversion of a bisfunctional cross-linking agent to a monofunctional alkylating agent allowed adduct diffusion to traverse an extrahelical -TT- bulge that previously acted as a barrier for its bisfunctional analog. An electron rich derivative of the monofunctional acridine conjugate was additionally prepared to accelerate the rates of DNA alkylation and QM regeneration. The resulting stabilization of this QM effectively enhanced the rate of its release from adducts attached at guanine N7 in competition with an alternative and detrimental deglycosylation pathway. Intercalation by the acridine component was not sufficient to hold the transient QM intermediates within duplex DNA and consequently these electrophiles diffused into solution and were subject to quenching by solvent and a model nucleophile, ß-mercaptoethanol.


Subject(s)
Acridines/chemistry , DNA/metabolism , Indolequinones/chemistry , Alkylating Agents/chemistry , Alkylation , DNA/chemistry , DNA Adducts/chemistry , Diffusion , Intercalating Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...