Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 147: 107392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723423

ABSTRACT

Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.


Subject(s)
Glycoside Hydrolase Inhibitors , Lignans , alpha-Amylases , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Structure-Activity Relationship , Humans , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry
2.
ACS Chem Biol ; 18(12): 2495-2505, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37948120

ABSTRACT

The ellagitannins vescalagin and vescalin, known as actin-dependent inhibitors of osteoclastic bone resorption, were mounted onto chemical probes to explore their interactions with bone cell proteins by means of affinity-based chemoproteomics and bioinformatics. The chemical reactivity of the pyrogallol units of these polyphenols toward oxidation into electrophilic ortho-quinones was exploited using NaIO4 to promote the covalent capture of target proteins, notably those expressed at lower abundance and those interacting with polyphenols at low-to-moderate levels of affinity. Different assays revealed the multitarget nature of both ellagitannins, with 100-370 statistically significant proteins captured by their corresponding probes. A much higher number of proteins were captured from osteoclasts than from osteoblasts. Bioinformatic analyses unveiled a preference for the capture of proteins having phosphorylated ligands and GTPase regulators and enabled the identification of 33 potential target proteins with systemic relevance to osteoclast differentiation and activity, as well as to the regulation of actin dynamics.


Subject(s)
Bone Resorption , Hydrolyzable Tannins , Humans , Hydrolyzable Tannins/metabolism , Actins/metabolism , Polyphenols/metabolism , Glucosides/metabolism , Bone Resorption/metabolism , Osteoblasts/metabolism , Cell Differentiation
3.
Int J Mol Sci ; 24(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37298676

ABSTRACT

This study aimed at searching for the enzymes that are responsible for the higher hydroxylation of flavonols serving as UV-honey guides for pollinating insects on the petals of Asteraceae flowers. To achieve this aim, an affinity-based chemical proteomic approach was developed by relying on the use of quercetin-bearing biotinylated probes, which were thus designed and synthesized to selectively and covalently capture relevant flavonoid enzymes. Proteomic and bioinformatic analyses of proteins captured from petal microsomes of two Asteraceae species (Rudbeckia hirta and Tagetes erecta) revealed the presence of two flavonol 6-hydroxylases and several additional not fully characterized proteins as candidates for the identification of novel flavonol 8-hydroxylases, as well as relevant flavonol methyl- and glycosyltransferases. Generally speaking, this substrate-based proteome profiling methodology constitutes a powerful tool for the search for unknown (flavonoid) enzymes in plant protein extracts.


Subject(s)
Asteraceae , Flavonoids , Asteraceae/metabolism , Proteomics , Flavonols/metabolism , Mixed Function Oxygenases , Plant Proteins/metabolism
4.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36297346

ABSTRACT

A series of 78 synthetic 7-chloro-(4-thioalkylquinoline) derivatives were investigated for cytotoxic activity against eight human cancer as well as 4 non-tumor cell lines. The results showed, with some exceptions, that sulfanyl 5-40 and sulfinyl 41-62 derivatives exhibited lower cytotoxicity for cancer cell lines than those of well-described sulfonyl N-oxide derivatives 63-82. As for compound 81, the most pronounced selectivity (compared against BJ and MRC-5 cells) was observed for human cancer cells from HCT116 (human colorectal cancer with wild-type p53) and HCT116p53-/- (human colorectal cancer with deleted p53), as well as leukemia cell lines (CCRF-CEM, CEM-DNR, K562, and K562-TAX), lung (A549), and osteosarcoma cells (U2OS). A good selectivity was also detected for compounds 73 and 74 for leukemic and colorectal (with and without p53 deletion) cancer cells (compared to MRC-5). At higher concentrations (5 × IC50) against the CCRF-CEM cancer cell line, we observe the accumulation of the cells in the G0/G1 cell phase, inhibition of DNA and RNA synthesis, and induction of apoptosis. In addition, X-ray data for compound 15 is being reported. These results provide useful scientific data for the development of 4-thioalkylquinoline derivatives as a new class of anticancer candidates.

5.
Nat Prod Bioprospect ; 12(1): 20, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35641706

ABSTRACT

From aerial parts of Austroeupatorium inulifolium was isolated the ent-nor-furano triol labdane austroeupatol 1. The compound 1 was treated with IBX showing an unexpected selectivity at the potentially oxidizable sites of the substrate yielding the 2-oxoaustroeupatol (2) and 2,19-dioxoaustroeupatol (3). The treatment of 2 with sodium periodate yields a heterocyclic derivative (ε-caprolactone derivate 4) formed by oxidative cleavage and unexpected intramolecular attack of the hydroxymethylene (C-19) oxygen to the ketonic carbon (C-2). A plausible mechanistic pathway for the obtention of compound 4 is proposed.

6.
Angew Chem Int Ed Engl ; 60(27): 14967-14974, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33851775

ABSTRACT

Many natural products of plant or microbial origins are derived from enzymatic dearomative oxygenation of 2-alkylphenolic precursors into 6-alkyl-6-hydroxycyclohexa-2,4-dienones. These so-called ortho-quinols cyclodimerize via a remarkably selective bispericyclic Diels-Alder reaction. Whether or not the intervention of catalytic or dirigent proteins is involved during this final step of the biosynthesis of these natural products, this cyclodimerization of ortho-quinols can be chemically reproduced in the laboratory with the same strict level of site-specific regioselectivity and stereoselectivity. This unique yet unified process, which finds its rationale in the inherent chemical reactivity of those ortho-quinols, is illustrated herein by an efficient and bioinspired first chemical synthesis of one of the most structurally complex and synthetically challenging examples of such natural cyclodimers, the bisditerpenoid (+)-maytenone.


Subject(s)
Biological Products/chemical synthesis , Quinolones/chemistry , Biological Products/chemistry , Cycloaddition Reaction , Dimerization , Molecular Structure , Stereoisomerism
7.
Chemistry ; 27(17): 5498-5508, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33443311

ABSTRACT

A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.


Subject(s)
Polyphenols , Surface Plasmon Resonance , Flavonoids , Humans , Ligands , Streptavidin
8.
Brain Res ; 1738: 146798, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32229200

ABSTRACT

The impact of maternal nutrition on neurodevelopment and neonatal neuroprotection is a research topic with increasing interest. Maternal diet can also have deleterious effects on fetal brain development. Fetal exposure to alcohol is responsible for poor neonatal global development, and may increase brain vulnerability to hypoxic-ischemic encephalopathy, one of the major causes of acute mortality and chronic neurological disability in newborns. Despite frequent prevention campaigns, about 10% of women in the general population drinks alcohol during pregnancy and breastfeeding. This study was inspired by this alarming fact. Its aim was to evaluate the beneficial effects of maternal supplementation with two polyphenols during pregnancy and breastfeeding, on hypoxic-ischemic neonate rat brain damages, sensorimotor and cognitive impairments, in a context of moderate maternal alcoholism. Both stilbenoid polyphenols, trans-resveratrol (RSV - 0.15 mg/kg/day), and its hydroxylated analog, trans-piceatannol (PIC - 0.15 mg/kg/day), were administered in the drinking water, containing or not alcohol (0.5 g/kg/day). In a 7-day post-natal rat model of hypoxia-ischemia (HI), our data showed that moderate maternal alcoholism does not increase brain lesion volumes measured by MRI but leads to higher motor impairments. RSV supplementation could not reverse the deleterious effects of HI coupled with maternal alcoholism. However, PIC supplementation led to a recovery of all sensorimotor and cognitive functions. This neuroprotection was obtained with a dose of PIC corresponding to the consumption of a single passion fruit per day for a pregnant woman.


Subject(s)
Alcohol Drinking/adverse effects , Polyphenols/therapeutic use , Prenatal Exposure Delayed Effects/physiopathology , Alcoholism/drug therapy , Animals , Animals, Newborn , Brain/drug effects , Brain Injuries/pathology , Cognitive Dysfunction/drug therapy , Female , Hypoxia/complications , Hypoxia-Ischemia, Brain/pathology , Ischemia/complications , Male , Maternal Nutritional Physiological Phenomena , Maternal-Fetal Exchange/physiology , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Polyphenols/metabolism , Pregnancy , Rats , Rats, Wistar , Resveratrol/therapeutic use , Stilbenes/therapeutic use
9.
Arch Pharm (Weinheim) ; 353(5): e2000002, 2020 May.
Article in English | MEDLINE | ID: mdl-32180262

ABSTRACT

A series of new nitroimidazole-containing derivatives was synthesized by coupling of 2-[2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethylthio]ethanol with diversely substituted benzoic acids. Upon treatment with m-CPBA, 12 of these sulfanyl compounds were further oxidized to their sulfonyl analogs. All the 26 synthetic compounds were examined for in vitro activity against Leishmania (V.) braziliensis and Leishmania (L.) mexicana, and some of them displayed an efficient antileishmanial activity. Among the compounds tested, the catecholic derivative 2-{[2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl]sulfanyl}ethyl 3,4-dihydroxybenzoate (9a, LC50 = 13 and 11 µM) and the pyrogallolic derivative 2-{[2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl]sulfanyl}ethyl 3,4,5-trihydroxybenzoate (9b, LC50 = 4 and 1 µM) were the most active ones against the two Leishmania strains.


Subject(s)
Antiprotozoal Agents/pharmacology , Benzoates/pharmacology , Leishmania/drug effects , Nitroimidazoles/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Benzoates/chemical synthesis , Benzoates/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Nitroimidazoles/chemical synthesis , Nitroimidazoles/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship
10.
Food Chem ; 313: 126099, 2020 May 30.
Article in English | MEDLINE | ID: mdl-31927321

ABSTRACT

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia, which can be counteracted by inhibition of α-glucosidase and α-amylase, both involved in the carbohydrate metabolism. Fourteen C-glucosidic ellagitannins and three galloylated glucoses were studied as potential α-glucosidase and α-amylase inhibitors. Most of the compounds were found to be moderate inhibitors of α-amylase, but potent inhibitors of α-glucosidase, showing low-micromolar IC50 values, far lower than that of the antidiabetic drug acarbose. This selectivity can be an advantage for their possible application as functional food ingredients with anti-diabetic properties because strong α-amylase inhibition generally causes undesired side effects. The best inhibitors were selected for further studies. Intrinsic fluorescence measurements confirmed their high affinity towards α-glucosidase, highlighting a static quenching mechanism. Circular dichroism measurements and kinetics of inhibition indicated that the most active C-glucosidic ellagitannin roburin D (RobD) is a competitive inhibitor, whereas α-pentagalloylglucose (α-PGG) acts as a mixed-type inhibitor.


Subject(s)
Hydrolyzable Tannins/chemistry , Hypoglycemic Agents/chemistry , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Circular Dichroism , Glucosides/chemistry , Hydrolyzable Tannins/metabolism , Hypoglycemic Agents/metabolism , Inhibitory Concentration 50 , Kinetics , Spectrometry, Fluorescence , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/chemistry
11.
Chemistry ; 25(49): 11574-11580, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31407847

ABSTRACT

The so-called Securinega alkaloids constitute a class of tetracyclic biologically active specialised metabolites isolated principally from subtropical plants belonging to the Phyllanthaceae family. Following a strategy based on alternative hypotheses for their biosynthesis, an easy and time-efficient divergent synthesis enabled access to twelve of those alkaloids featuring (neo)(nor)securinane skeletons. Moreover, this work permitted to reassign the absolute configurations of (+)-virosine B and (-)-episecurinol A.


Subject(s)
Alkaloids/biosynthesis , Alkaloids/chemistry , Euphorbiaceae/chemistry , Euphorbiaceae/metabolism , Mesylates/chemistry , Molecular Conformation , Stereoisomerism
12.
J Agric Food Chem ; 67(34): 9579-9590, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31381329

ABSTRACT

The first contact of tannins with the human body occurs in the mouth, where some of these tannins are known to interact with salivary proteins, in particular with proline-rich proteins (PRPs). These interactions are important at a sensory level, especially for astringency development, but could also affect the biological activities of the tannins. This study gathers information on the relative affinity of the interaction, complex stoichiometry, and tannin molecular epitopes of binding for the interactions between the families of PRPs (bPRPs, gPRPs, and aPRPs) and three representative ellagitannins (castalagin, vescalagin, and punicalagin). These interactions were studied by saturation-tranfer difference NMR and microcalorimetry. The effect of the PRP-ellagitannin interaction on their antioxidant ability was also assessed by ferric reduction antioxidant power (FRAP) assays. The results support a significant interaction between the studied tannins and PRPs with binding affinities in the micromolar range. Punicalagin was always the ellagitannin with higher affinity. aPRPs were the salivary PRPs with higher affinity. Moreover, it was observed that when ellagitannins are present in low concentrations (5-50 µM), as occurs in food, the antioxidant ability of these tannins when complexed with salivary PRPs could be significantly impaired.


Subject(s)
Hydrolyzable Tannins/chemistry , Salivary Proline-Rich Proteins/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Astringents/chemistry , Astringents/metabolism , Humans , Hydrolyzable Tannins/metabolism , Kinetics , Protein Binding , Saliva/chemistry , Saliva/metabolism , Salivary Proline-Rich Proteins/metabolism , Taste
13.
Drug Res (Stuttg) ; 69(7): 374-373, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30134445

ABSTRACT

Anti-herpes simplex virus (HSV-1) activity of 9 ellagitannins, including 6 natural compounds (castalin, vescalin, acutissimin A, epiacutissimins A and B, mongolicain) and 3 vescalagin synthetic derivatives (VgSBuSH, VgSOctSH, VgOMe), and 13 gallotannin-type compounds [Gal-01A, Gal-01B, Gal-02A, Gal-02B, Gal-03M, Gal-04A, Gal-04B, Gal-05M, Gal-07, Gal-08, Gal-09, Gal-11M (tannic acid), as well as Gal-12 (gallic acid), Gal-13 and Gal-14 (ellagic acid)] were examined in MDBK monolayer cell culture. Their antiviral activity was determined by the cytopathic effect (CPE) inhibition test and their cytotoxicity was evaluated through the neutral red uptake assay. In general, the series of ellagitannins showed a significantly stronger activity against HSV-1 replication than that of the gallotannins. Six of the tested ellagitannins manifested a well-pronounced activity: epiacutissimin B (selectivity index, SI>60.6), epiacutissimin A (SI>55.5), acutissimin A (SI>34.8), mongolicain (SI>32.5), VgSBuSH (SI>24.6) and VgOMe (SI>22.0). Four gallotannin-type compounds inhibited the replication of HSV-1 at a lower but still significant extent: Gal-04B (SI>35.7), Gal-04A (SI>28.5), Gal-11M (tannic acid) (SI>25) and Gal-05M (SI=15.6).


Subject(s)
Herpesvirus 1, Human/drug effects , Hydrolyzable Tannins/pharmacology , Virus Replication/drug effects , Animals , Cattle , Cell Line , Herpesvirus 1, Human/physiology , Microbial Sensitivity Tests
14.
Chemistry ; 25(11): 2852-2858, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30589145

ABSTRACT

The facile and convenient preparation of both enantiomers of a [7]helicene scaffold from inexpensive (l)-(+)-tartaric acid and 4-methylstyrene is described. These helical structures were transformed into bis-iodinated ether derivatives in order to explore their potential as precursors of novel chiral organoiodane reagents or as iodoarene pre-catalysts. Promising results were obtained in hydroxylative phenol dearomatization/[4+2] cycloaddition cascade and dearomative spirolactonization reactions with encouraging enantiomeric excesses.

15.
Eur J Cell Biol ; 97(8): 533-545, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30287085

ABSTRACT

Actin subunits assemble into actin filaments whose dynamics and three-dimensional architectures are further regulated by a variety of cellular factors to establish the functional actin cytoskeleton. The C-glucosidic ellagitannin vescalagin and its simpler analogue vescalin, affect both the dynamics and the ultrastructure of the actin cytoskeleton by directly binding to F-actin. Herein, we show that in vitro, the two compounds induce the formation of distinct F-actin networks characterized by different superstructures and dynamics. In living mature osteoclasts, highly specialized bone-degrading cells that constantly remodel their cytoskeleton, vescalagin and vescalin alter actin dynamics at podosomes and compromise the integrity of the podosome belt that forms the bone-degrading apparatus. Both compounds target the bone-resorbing activity at concentrations that preserve osteoclastic maturation and survival and with no detectable impact on the behaviour of bone-forming osteoblastic cells. This anti-osteoclastic activity of vescalagin and vescalin reveals the potential of targeting actin dynamics as a new therapeutic opportunity and, in this case, as a plausible approach for the local treatment of osteoporosis.


Subject(s)
Actins/metabolism , Glucosides/pharmacology , Hydrolyzable Tannins/pharmacology , Osteoclasts/cytology , Osteoclasts/metabolism , Actin Cytoskeleton/metabolism , Animals , Bone Resorption/pathology , Cell Adhesion/drug effects , Cell Differentiation , Cell Survival/drug effects , Cytoskeleton/metabolism , Extracellular Matrix/metabolism , Glucosides/chemistry , Hydrolyzable Tannins/chemistry , Mice, Inbred C57BL , Osteoclasts/drug effects , Podosomes/metabolism , Polymerization
16.
Sci Rep ; 8(1): 10399, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29991731

ABSTRACT

Complex biomolecules present in their natural sources have been difficult to analyze using traditional analytical approaches. Ultrahigh-performance liquid chromatography (UHPLC-MS/MS) methods have the potential to enhance the discovery of a less well characterized and challenging class of biomolecules in plants, the ellagitannins. We present an approach that allows for the screening of ellagitannins by employing higher energy collision dissociation (HCD) to generate reporter ions for classification and collision-induced dissociation (CID) to generate unique fragmentation spectra for isomeric variants of previously unreported species. Ellagitannin anions efficiently form three characteristic reporter ions after HCD fragmentation that allows for the classification of unknown precursors that we call targeted reporter ion triggering (TRT). We demonstrate how a tandem HCD-CID experiment might be used to screen natural sources using UHPLC-MS/MS by application of 22 method conditions from which an optimized data-dependent acquisition (DDA) emerged. The method was verified not to yield false-positive results in complex plant matrices. We were able to identify 154 non-isomeric ellagitannins from strawberry leaves, which is 17 times higher than previously reported in the same matrix. The systematic inclusion of CID spectra for isomers of each species classified as an ellagitannin has never been possible before the development of this approach.

17.
J Org Chem ; 82(22): 11816-11828, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28991470

ABSTRACT

A concise synthesis of two scyphostatin analogues is achieved from readily available ortho-substituted phenols. Key features include an asymmetric and biomimetic hydroxylative phenol dearomatization (HPD) reaction promoted by a chiral salen-type bis(λ5-iodane) reagent, followed by an in situ regio- and diastereocontrolled epoxidation.


Subject(s)
Amides/chemical synthesis , Iodine/chemistry , Phenols/chemistry , Pyrones/chemical synthesis , Amides/chemistry , Molecular Structure , Pyrones/chemistry , Stereoisomerism
18.
Angew Chem Int Ed Engl ; 56(44): 13833-13837, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28857392

ABSTRACT

The first total synthesis of the 2,3,5-O-(S,R)-nonahydroxytriphenoylated (NHTP) C-glucosidic ellagitannin (-)-vescalin was accomplished through a series of transformations mimicking the sequence of events leading to its biogenesis. The key steps of this synthesis encompass a Wittig-mediated ring opening of a glucopyranosic hemiacetal, a C-glucosidation event through a phenolic aldol-type reaction, and a Wynberg-Feringa-Yamada-type oxidative phenolic coupling, which forged the NHTP unit of (-)-vescalin.

19.
Top Curr Chem ; 373: 25-74, 2016.
Article in English | MEDLINE | ID: mdl-26809622

ABSTRACT

This chapter highlights recent developments in phenol dearomatization using organoiodane reagents and a selection of applications in natural product synthesis.


Subject(s)
Biological Products/chemical synthesis , Indicators and Reagents , Iodine Compounds/chemistry , Phenol/chemistry , Alkaloids/chemical synthesis , Cyclization , Quinones/chemical synthesis
20.
Angew Chem Int Ed Engl ; 54(28): 8217-21, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26013280

ABSTRACT

The screening of natural products in the search for new lead compounds against Alzheimer's disease has unveiled several plant polyphenols that are capable of inhibiting the formation of toxic ß-amyloid fibrils. Gallic acid based gallotannins are among these polyphenols, but their antifibrillogenic activity has thus far been examined using "tannic acid", a commercial mixture of gallotannins and other galloylated glucopyranoses. The first total syntheses of two true gallotannins, a hexagalloylglucopyranose and a decagalloylated compound whose structure is commonly used to depict "tannic acid", are now described. These depsidic gallotannins and simpler galloylated glucose derivatives all inhibit amyloid ß-peptide (Aß) aggregation in vitro, and monogalloylated α-glucogallin and a natural ß-hexagalloylglucose are shown to be the strongest inhibitors.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/chemistry , Gallic Acid/chemistry , Tannins/chemistry , Molecular Structure , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...