Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 15(12): 2010-2027, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36540633

ABSTRACT

Habitat fragmentation impacts the distribution of genetic diversity and population genetic structure. Therefore, protecting the evolutionary potential of species, especially in the context of the current rate of human-induced environmental change, is an important goal. In riverine ecosystems, migration barriers affect the genetic structure of native species, while also influencing the spread of invasive species. In this study, we compare genetic patterns of two native and one highly invasive riverine fish species in a Belgian river basin, namely the native three-spined stickleback (Gasterosteus aculeatus) and stone loach (Barbatula barbatula), and the non-native and invasive topmouth gudgeon (Pseudorasbora parva). We aimed to characterize both natural and anthropogenic determinants of genetic diversity and population genetic connectivity. Genetic diversity was highest in topmouth gudgeon, followed by stone loach and three-spined stickleback. The correlation between downstream distance and genetic diversity, a pattern often observed in riverine systems, was only marginally significant in stone loach and three-spined stickleback, while genetic diversity strongly declined with increasing number of barriers in topmouth gudgeon. An Isolation-By-Distance pattern characterizes the population genetic structure of each species. Population differentiation was only associated with migration barriers in the invasive topmouth gudgeon, while genetic composition of all species seemed at least partially determined by the presence of migration barriers. Among the six barrier types considered (watermills, sluices, tunnels, weirs, riverbed obstructions, and others), the presence of watermills was the strongest driver of genetic structure and composition. Our results indicate that conservation and restoration actions, focusing on conserving genetic patterns, cannot be generalized across species. Moreover, measures might target either on restoring connectivity, while risking a rapid spread of the invasive topmouth gudgeon, or not restoring connectivity, while risking native species extinction in upstream populations.

2.
Parasitology ; 149(9): 1164-1172, 2022 08.
Article in English | MEDLINE | ID: mdl-35570701

ABSTRACT

How parasites alter host feeding ecology remains elusive in natural populations. A powerful approach to investigate the link between infection and feeding ecology is quantifying unique and shared responses to parasite infection in related host species within a common environment. Here, 9 pairs of sympatric populations of the three-spined and nine-spined stickleback fishes were sampled across a range of freshwater and brackish habitats to investigate how parasites alter host feeding ecology: (i) biotic and abiotic determinants of parasite community composition, and (ii) to what extent parasite infection correlates with trophic niche specialization of the 2 species, using stable isotope analyses (δ15N and δ13C). It was determined that parasite community composition and host parasite load varied among sites and species and were correlated with dissolved oxygen. It was also observed that the digenean Cyathocotyle sp.'s abundance, a common directly infecting parasite with a complex life cycle, correlated with host δ13C in a fish species-specific manner. In 6 sites, correlations were found between parasite abundance and their hosts' feeding ecology. These effects were location-specific and occasionally host species or host size-specific. Overall, the results suggest a relationship between parasite infection and host trophic niche which may be an important and largely overlooked ecological factor. The population specificity and variation in parasite communities also suggest this effect is multifarious and context-dependent.


Subject(s)
Fish Diseases , Parasitic Diseases , Smegmamorpha , Trematoda , Animals , Fish Diseases/parasitology , Fishes , Host-Parasite Interactions , Smegmamorpha/parasitology
3.
Evol Appl ; 14(10): 2553-2567, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34745343

ABSTRACT

Anthropogenic stressors, such as pollutants, act as selective factors that can leave measurable changes in allele frequencies in the genome. Metals are of particular concern among pollutants, because of interference with vital biological pathways. We use the three-spined stickleback as a model for adaptation to mercury pollution in natural populations. We collected sticklebacks from 21 locations in Flanders (Belgium), measured the accumulated levels of mercury in the skeletal muscle tissue, and genotyped the fish by sequencing (GBS). The spread of muscle mercury content across locations was considerable, ranging from 21.5 to 327 ng/g dry weight (DW). We then conducted a genome-wide association study (GWAS) between 28,450 single nucleotide polymorphisms (SNPs) and the accumulated levels of mercury, using different approaches. Based on a linear mixed model analysis, the GWAS yielded multiple hits with a single top hit on Chromosome 4, with eight more SNPs suggestive of association. A second approach, a latent factor mixed model analysis, highlighted one single SNP on Chromosome 11. Finally, an outlier test identified one additional SNP on Chromosome 4 that appeared under selection. Out of all ten SNPs we identified as associated with mercury in muscle, three SNPs all located on Chromosome 4 and positioned within a 2.5 kb distance of an annotated gene. Based on these results and the genome coverage of our SNPs, we conclude that the selective effect of mercury pollution in Flanders causes a significant association with at least one locus on Chromosome 4 in three-spined stickleback.

SELECTION OF CITATIONS
SEARCH DETAIL
...