Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spine (Phila Pa 1976) ; 40(24): 1890-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26571158

ABSTRACT

STUDY DESIGN: Biomechanical Laboratory Study. OBJECTIVE: Analysis of the biomechanical characteristics of a novel sacral constrained dual-screw fixation device (S1-PALA), combining a S1-pedicle screw and a S1-ala screw, compared to a standard bicortical S1-pedicle screw (S1-PS) fixation. SUMMARY OF BACKGROUND DATA: Instrumented fusions to the sacrum are biomechanically challenging and plagued by a high risk of nonunion when S1-PS is used as the sole means of fixation. Thus, lumbopelvic fixation is increasingly selected instead, although associated with a reasonable number of instrumentation-related complications. METHODS: Around 30 fresh-frozen human sacral bones were harvested and embedded after CT scans. Instrumentation was conducted in alternating order with bicortical 7.0 mm S1-PS and with the S1-PALA including a S1-PS screw and a S1-ala screw, of 7.0 and 6.0 mm diameter, respectively. Specimens were subjected to cyclic loading with increasing loads (25-250 N) until a maximum of 2000 cycles or displacement >2 mm occurred. All implant sacral units (ISUs) were subject to coaxial pullout tests. Failure load, number of ISUs surpassing 2000 cycles, number of cycles, and loads at failure were recorded and compared. RESULTS: Donors' age averaged 77 ± 14.2 years, and BMD was 115 ± 64.8 mgCA-HA/ml. Total working length of screws implanted was 90 ± 8.6 mm in the S1-PALA group and 46 ± 5 mm in the S1-PS group (P = 0.0002). In the S1-PALA group, displacement >2 mm occurred after 845 ± 325 cycles at 149 ± 41 N compared to 512 ± 281 cycles at 106 ± 36 N in the S1-PS group (P = 0.004; P = 0.002). In coaxial pull-out testing, failure load was 2118.1 ± 1166 N at a displacement of 2.5 ± 1 mm in the S1-PALA group compared to 1375.6 ± 750.1 N at a displacement of 1.6 ± 0.5 mm in the S1-PS group (P = 0.0007; P = 0.0003). CONCLUSION: The novel sacral constrained dual-screw anchorage (S1-PALA) significantly improved holding strength after cyclic loading compared to S1-PS. The S1-PALA demonstrated mechanical potential as a useful adjunct in the armamentarium of lumbosacral fixations indicated in cases that need advanced construct stability, but where instrumentation to the ilium or distal dissection to S2 should be avoided. LEVEL OF EVIDENCE: N/A.


Subject(s)
Biomechanical Phenomena/physiology , Pedicle Screws , Sacrum/surgery , Spinal Fusion/instrumentation , Spinal Fusion/methods , Aged , Aged, 80 and over , Humans , Middle Aged , Radiography , Sacrum/diagnostic imaging
2.
J Biomech Eng ; 135(11): 114506, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24008834

ABSTRACT

Design excellence (DEX) tools have been widely used for years in some industries for their potential to facilitate new product development. The medical sector, targeted by cost pressures, has therefore started adopting them. Numerous tools are available; however only appropriate deployment during the new product development stages can optimize the overall process. The primary study objectives were to describe generic tools and illustrate their implementation and management during the development of new orthopaedic implants, and compile a reference package. Secondary objectives were to present the DEX tool investment costs and savings, since the method can require significant resources for which companies must carefully plan. The publicly available DEX method "Define Measure Analyze Design Verify Validate" was adopted and implemented during the development of a new spinal implant. Several tools proved most successful at developing the correct product, addressing clinical needs, and increasing market penetration potential, while reducing design iterations and manufacturing validations. Cost analysis and Pugh Matrix coupled with multi generation planning enabled developing a strong rationale to activate the project, set the vision and goals. improved risk management and product map established a robust technical verification-validation program. Design of experiments and process quantification facilitated design for manufacturing of critical features, as early as the concept phase. Biomechanical testing with analysis of variance provided a validation model with a recognized statistical performance baseline. Within those tools, only certain ones required minimum resources (i.e., business case, multi generational plan, project value proposition, Pugh Matrix, critical To quality process validation techniques), while others required significant investments (i.e., voice of customer, product usage map, improved risk management, design of experiments, biomechanical testing techniques). All used techniques provided savings exceeding investment costs. Some other tools were considered and found less relevant. A matrix summarized the investment costs and generated estimated savings. Globally, all companies can benefit from using DEX by smartly selecting and estimating those tools with best return on investment at the start of the project. For this, a good understanding of the available company resources, background and development strategy are needed. In conclusion, it was possible to illustrate that appropriate management of design excellence tools can greatly facilitate the development of new orthopaedic implant systems.


Subject(s)
Orthopedics/methods , Prosthesis Design/methods , Biomechanical Phenomena , Equipment and Supplies , Humans , Prosthesis Design/instrumentation
3.
SAS J ; 5(3): 75-89, 2011.
Article in English | MEDLINE | ID: mdl-25802672

ABSTRACT

Over the past few decades, remarkable advancements in the understanding of the origin of low-back pain and lumbar spinal disorders have been achieved. Spinal fusion is generally considered the "gold standard" in the treatment of low-back pain; however, fusion is also associated with accelerated degeneration of adjacent levels. Spinal arthroplasty and dynamic stabilization technologies, as well as the continuous improvement in diagnosis and surgical interventions, have opened a new era of treatment options. Recent advancements in nonfusion technologies such as motion-preservation devices and posterior dynamic stabilization may change the gold standard. These devices are designed with the intent to provide stabilization and eliminate pain while preserving motion of the functional spinal unit. The adaption of nonfusion technologies by the surgical community and payers for the treatment of degenerative spinal conditions will depend on the long-term clinical outcome of controlled randomized clinical studies. Although the development of nonfusion technology has just started and the adoption is very slow, it may be considered a viable option for motion preservation in coming years. This review article provides technical and surgical views from the past and from the present, as well as a glance at the future endeavors and challenges in instrumentation development for lumbar spinal disorders. © 2011 SAS - The International Society for the Advancement of Spine Surgery. Published by Elsevier Inc. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL
...