Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(3)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335667

ABSTRACT

BACKGROUND AND OBJECTIVES: Since 2015, platelet products have been pathogen-inactivated (PI) at the Luxemburgish Red Cross (LRC) using Riboflavin and UV light (RF-PI). As the LRC should respond to hospital needs at any time, platelet production exceeds the demand, generating a discard rate of 18%. To reduce this, we consider the extension of storage time from 5 to 7 days. This study's objective was to evaluate the in vitro 7-day platelet-storage quality, comparing two PI technologies, RF-PI and amotosalen/UVA light (AM-PI), for platelet pools from whole-blood donations (PPCs) and apheresis platelets collected from single apheresis donation (APCs). MATERIALS AND METHODS: For each product type, 6 double-platelet concentrates were prepared and divided into 2 units; one was treated with RF-PI and the other by AM-PI. In vitro platelet-quality parameters were tested pre- and post-PI, at days 5 and 7. RESULTS: Treatment and storage lesions were observed in PPCs and APCs with both PI methods. We found a higher rate of lactate increase and glucose depletion, suggesting a stronger stimulation of the glycolytic pathway, a higher Annexin V binding, and a loss of swirling in the RF-PI-treated units from day 5. The platelet loss was significantly higher in the AM-PI compared with the RF-PI units. CONCLUSIONS: Results suggest that RF-PI treatment has a higher deleterious impact on in vitro platelet quality compared to AM-PI, but we observed higher loss of platelets with AM-PI due to the post-illumination amotosalen adsorption step. If 7-day storage is needed, it can only be achieved with AM-PI, based on our quality criteria.

2.
Transfus Apher Sci ; 60(5): 103195, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34147359

ABSTRACT

In 2014-2015, the Luxembourg Red Cross (LRC) implemented a fully automated system (FAS) able to process 4 whole blood units simultaneously, and a pathogen reduction technology (PRT) based on riboflavin and ultraviolet light to improve safety of platelet concentrates (PCs). In this observational study, the impact of both technologies to enable this centralised blood transfusion centre to provide safe and timely blood components supply for the whole country was analysed. Standard quality control parameters for blood components, productivity and safety were compared from data collected with the conventional semi- automated buffy coat method and with FAS/PRT. The FAS decreased processing time when compared with the buffy coat method and facilitated the daily routine at the LRC. Red blood cell concentrates, plasma units and PCs prepared with both methods were conform to the European Directorate for the Quality of Medicines & HealthCare specifications. PCs prepared by FAS showed high yields, with decreased variability when the device-related software (T-Pool Select) was used. PRT had minimal impact on platelet yields and product quality and induced no increase in transfusion reaction notifications. The FAS and PRT transformed the daily routine of blood component manufacture by allowing increased productivity and efficiency, notwithstanding resource containment and without impacting quality, yet promoting safety.


Subject(s)
Blood Component Transfusion/instrumentation , Blood Preservation/instrumentation , Blood Preservation/methods , Platelet Transfusion/instrumentation , Automation , Blood Component Transfusion/methods , Blood Platelets/drug effects , Blood Safety , Erythrocytes/cytology , Humans , Luxembourg , Plasma , Platelet Count , Platelet Transfusion/methods , Quality Control , Red Cross , Retrospective Studies , Riboflavin/pharmacology , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...