Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 44(9): 2215-2229, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31422522

ABSTRACT

The ability to regrow their axons after an injury is a hallmark of neurons in peripheral nervous system which distinguish them from central nervous system neurons. This ability is influenced by their intrinsic capacity to regrow and by the extracellular environment which needs to be supportive of regrowth. CXCL1 [Chemokine (C-X-C motif) Ligand 1] and CXCL2 [Chemokine (C-X-C motif) Ligand 2] are two low-molecular-weight chemokines which can influence neuronal proliferation, differentiation and neurogenesis, but which are also upregulated by injury or inflammation. In this study we investigated the effects of long-term incubation (24, 48 and 72 h) with different concentrations of CXCL1 (0.4, 4 or 40 nM) or CXCL2 (0.36, 3.6 or 36 nM) on the axon outgrowth of adult rat dorsal root ganglia neurons in culture. The results showed that both chemokines significantly inhibited the axon outgrowth, with large and medium NF200 (NeuroFilament 200) (+) dorsal root ganglia neurons affected quicker, compared to small IB4 (Isolectin B4) (+) dorsal root ganglia neurons which were affected after longer exposure. Blocking CXCR2 (C-X-C motif chemokine receptor 2) which mediates the effects of CXCL1 and CXCL2 prevented these effects, suggesting that CXCR2 may represent a new therapeutic target for promoting the axon outgrowth after a peripheral nerve injury.


Subject(s)
Axons/drug effects , Chemokine CXCL1/pharmacology , Chemokine CXCL2/pharmacology , Ganglia, Spinal/cytology , Neuronal Outgrowth/drug effects , Neurons/drug effects , Animals , Male , Rats, Wistar
2.
J Pharmacol Toxicol Methods ; 100: 106599, 2019.
Article in English | MEDLINE | ID: mdl-31228558

ABSTRACT

INTRODUCTION: The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative proposes a three-step approach to evaluate proarrhythmogenic liability of drug candidates: effects on individual ion channels in heterologous expression systems, integrating these data into in-silico models of the electrical activity of human cardiomyocytes, and comparison with experiments on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Here we introduce patch-clamp electrophysiology techniques on hiPSC-CM to combine two of the CiPA steps in one assay. METHODS: We performed automated patch-clamp experiments on hiPSC-CM (Cor.4U®, Ncardia) using the CytoPatch™2 platform in ruptured whole-cell and ß-escin-perforated-patch configurations. A combination of three voltage-clamp protocols allowed recording of five distinct ion current components (voltage-gated Na+ current, L-type Ca2+ current, transient outward K+ current, delayed rectifier K+ current, and "funny" hyperpolarization-activated current) from the same cell. We proved their molecular identity by either Na+ replacement with choline or by applying specific blockers: nifedipine, cisapride, chromanol 293B, phrixotoxin-1, ZD7288. We developed a C++ script for automated analysis of voltage-clamp recordings and computation of ion current/conductance surface density for these five cardiac ion currents. RESULTS: The distributions from n = 54 hiPSC-CM in "ruptured" patch-clamp vs. n = 35 hiPSC-CM in ß-escin-perforated patch-clamp were similar for membrane capacitance, access resistance, and ion current/conductance surface densities. The ß-escin-perforated configuration resulted in improved stability of action potential (AP) shape and duration over a 10-min interval, with APD90 decay rate 0.7 ±â€¯1.6%/min (mean ±â€¯SD, n = 4) vs. 4.6 ±â€¯1.1%/min. (n = 3) for "ruptured" approach (p = 0.0286, one-tailed Mann-Whitney test). DISCUSSION: The improved stability obtained here will allow development of CiPA-compliant automated patch-clamp assays on hiPSC-CM. Future applications include the study of multi ion-channel blocking properties of drugs using dynamic-clamp protocols, adding a valuable new tool to the arsenal of safety-pharmacology.


Subject(s)
Action Potentials/drug effects , Arrhythmias, Cardiac/chemically induced , Ion Channels/drug effects , Myocytes, Cardiac/drug effects , Arrhythmias, Cardiac/diagnosis , Computer Simulation , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug-Related Side Effects and Adverse Reactions/prevention & control , Humans , Induced Pluripotent Stem Cells/cytology , Ion Channels/metabolism , Myocytes, Cardiac/cytology , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...