Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Eur Biophys J ; 51(3): 241-256, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35199191

ABSTRACT

Like all biological and chemical reactions, ion channel kinetics are highly sensitive to changes in temperature. Therefore, it is prudent to investigate channel dynamics at physiological temperatures. However, most ion channel investigations are performed at room temperature due to practical considerations, such as recording stability and technical limitations. This problem is especially severe for the fast voltage-gated sodium channel, whose activation kinetics are faster than the time constant of the standard patch-clamp amplifier at physiological temperatures. Thus, biologically detailed simulations of the action potential generation evenly scale the kinetic models of voltage-gated channels acquired at room temperature. To quantitatively study voltage-gated sodium channels' temperature sensitivity, we recorded sodium currents from nucleated patches extracted from the rat's layer five neocortical pyramidal neurons at several temperatures from 13.5 to 30 °C. We use these recordings to model the kinetics of the voltage-gated sodium channel as a function of temperature. We show that the temperature dependence of activation differs from that of inactivation. Furthermore, the data indicate that the sustained current has a different temperature dependence than the fast current. Our kinetic and thermodynamic analysis of the current provided a numerical model spanning the entire temperature range. This model reproduced vital features of channel activation and inactivation. Furthermore, the model also reproduced action potential dependence on temperature. Thus, we provide an essential building block for the generation of biologically detailed models of cortical neurons.


Subject(s)
Ion Channel Gating , Voltage-Gated Sodium Channels , Animals , Ion Channels , Kinetics , Patch-Clamp Techniques , Rats , Thermodynamics
2.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34939044

ABSTRACT

The study of electrical activity in single cells and local circuits of excitable cells, such as neurons, requires an easy-to-use, high-throughput methodology that allows for the measurement of membrane potential. Investigating the electrical properties in specific subcompartments of neurons, or in a specific type of neurons, introduces additional complexity. An optical voltage-imaging technique that allows high spatial and temporal resolution could be an ideal solution. However, most valid voltage-imaging techniques are nonspecific. Those that are more site-directed require a lot of preliminary work and specific adaptations, among other drawbacks. Here, we explore a new method for membrane voltage imaging, based on Förster resonance energy transfer between fluorescent polystyrene (FPS) beads and dipicrylamine. Not only has it been shown that fluorescence intensity correlates with membrane potential, but more importantly, the membrane potential from individual particles can be detected. Among other advantages, FPS beads can be synthesized with surface functional groups and can be targeted to specific proteins by conjugation of recognition molecules. Therefore, in the presence of dipicrylamine, FPS beads represent single-particle detectors of membrane potential that can be localized to specific membrane compartments. This new and easily accessible platform for targeted optical voltage imaging can further elucidate the mechanisms of neuronal electrical activity.

3.
Biophys Rep (N Y) ; 1(1): None, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34568861

ABSTRACT

Nanodisc technology was implemented as a platform for voltage nanosensors. A fluorescence (Förster) resonance energy transfer (FRET)- based voltage-sensing scheme employing fluorescent nanodiscs and the hydrophobic ion dipicrylamine was developed and utilized to optically record membrane potentials on the single-nanodisc level. Ensemble and single-nanosensor recordings were demonstrated for HEK293 cells and primary cortical neuron cells. Conjugation of nanodiscs to anti-GABAA antibodies allowed for site-specific membrane potential measurements from postsynaptic sites.

4.
Small ; 15(52): e1903006, 2019 12.
Article in English | MEDLINE | ID: mdl-31765076

ABSTRACT

Integral membrane proteins mediate a myriad of cellular processes and are the target of many therapeutic drugs. Enhancement and extension of the functional scope of membrane proteins can be realized by membrane incorporation of engineered nanoparticles designed for specific diagnostic and therapeutic applications. In contrast to hydrophobic insertion of small amphiphilic molecules, delivery and membrane incorporation of particles on the nanometric scale poses a crucial barrier for technological development. In this perspective, the transformative potential of biomimetic membrane proteins (BMPs), current state of the art, and the barriers that need to be overcome in order to advance the field are discussed.


Subject(s)
Biomimetics/methods , Membrane Proteins/chemistry , Nanoparticles/chemistry , Nanotubes/chemistry , Quantum Dots
5.
Front Mol Neurosci ; 10: 92, 2017.
Article in English | MEDLINE | ID: mdl-28428744

ABSTRACT

The broad-spectrum anthelmintic drug ivermectin (IVM) activates and stabilizes an open-channel conformation of invertebrate chloride-selective glutamate receptors (GluClRs), thereby causing a continuous inflow of chloride ions and sustained membrane hyperpolarization. These effects suppress nervous impulses and vital physiological processes in parasitic nematodes. The GluClRs are pentamers. Homopentameric receptors assembled from the Caenorhabditis elegans (C. elegans) GluClα (GLC-1) subunit can inherently respond to IVM but not to glutamate (the neurotransmitter). In contrast, heteromeric GluClα/ß (GLC-1/GLC-2) assemblies respond to both ligands, independently of each other. Glutamate and IVM bind at the interface between adjacent subunits, far away from each other; glutamate in the extracellular ligand-binding domain, and IVM in the ion-channel pore periphery. To understand the importance of putative intersubunit contacts located outside the glutamate and IVM binding sites, we introduced mutations at intersubunit interfaces, between these two binding-site types. Then, we determined the effect of these mutations on the activation of the heteromeric mutant receptors by glutamate and IVM. Amongst these mutations, we characterized an α-subunit point mutation located close to the putative IVM-binding pocket, in the extracellular end of the first transmembrane helix (M1). This mutation (αF276A) moderately reduced the sensitivity of the heteromeric GluClαF276A/ßWT receptor to glutamate, and slightly decreased the receptor subunits' cooperativity in response to glutamate. In contrast, the αF276A mutation drastically reduced the sensitivity of the receptor to IVM and significantly increased the receptor subunits' cooperativity in response to IVM. We suggest that this mutation reduces the efficacy of channel gating, and impairs the integrity of the IVM-binding pocket, likely by disrupting important interactions between the tip of M1 and the M2-M3 loop of an adjacent subunit. We hypothesize that this physical contact between M1 and the M2-M3 loop tunes the relative orientation of the ion-channel transmembrane helices M1, M2 and M3 to optimize pore opening. Interestingly, pre-exposure of the GluClαF276A/ßWT mutant receptor to subthreshold IVM concentration recovered the receptor sensitivity to glutamate. We infer that IVM likely retained its positive modulation activity by constraining the transmembrane helices in a preopen orientation sensitive to glutamate, with no need for the aforementioned disrupted interactions between M1 and the M2-M3 loop.

6.
Sci Rep ; 7: 42481, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28218274

ABSTRACT

Ivermectin (IVM) is a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. By activating invertebrate pentameric glutamate-gated chloride channels (GluCl receptors; GluClRs), IVM induces sustained chloride influx and long-lasting membrane hyperpolarization that inhibit neural excitation in nematodes. Although IVM activates the C. elegans heteromeric GluClα/ß receptor, it cannot activate a homomeric receptor composed of the C. elegans GluClß subunits. To understand this incapability, we generated a homopentameric α7-GluClß chimeric receptor that consists of an extracellular ligand-binding domain of an α7 nicotinic acetylcholine receptor known to be potentiated by IVM, and a chloride-selective channel domain assembled from GluClß subunits. Application of IVM prior to acetylcholine inhibited the responses of the chimeric α7-GluClßR. Adding IVM to activated α7-GluClßRs, considerably accelerated the decline of ACh-elicited currents and stabilized the receptors in a non-conducting state. Determination of IVM association and dissociation rate constants and recovery experiments suggest that, following initial IVM binding to open α7-GluClßRs, the drug induces a conformational change and locks the ion channel in a closed state for a long duration. We further found that IVM also inhibits the activation by glutamate of a homomeric receptor assembled from the C. elegans full-length GluClß subunits.


Subject(s)
Ivermectin/chemistry , Ligand-Gated Ion Channels/chemistry , Acetylcholine/chemistry , Acetylcholine/pharmacology , Animals , CHO Cells , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Membrane/metabolism , Chloride Channels , Cricetulus , Dose-Response Relationship, Drug , Gene Expression , Ion Channel Gating , Isomerism , Ivermectin/pharmacology , Ligand-Gated Ion Channels/genetics , Ligand-Gated Ion Channels/metabolism , Ligands , Models, Molecular , Molecular Conformation , Protein Multimerization , Structure-Activity Relationship
7.
Proc Natl Acad Sci U S A ; 113(5): E644-53, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26792524

ABSTRACT

The invertebrate glutamate-gated chloride-selective receptors (GluClRs) are ion channels serving as targets for ivermectin (IVM), a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. The native GluClR is a heteropentamer consisting of α and ß subunit types, with yet unknown subunit stoichiometry and arrangement. Based on the recent crystal structure of a homomeric GluClαR, we introduced mutations at the intersubunit interfaces where Glu (the neurotransmitter) binds. By electrophysiological characterization of these mutants, we found heteromeric assemblies with two equivalent Glu-binding sites at ß/α intersubunit interfaces, where the GluClß and GluClα subunits, respectively, contribute the "principal" and "complementary" components of the putative Glu-binding pockets. We identified a mutation in the IVM-binding site (far away from the Glu-binding sites), which significantly increased the sensitivity of the heteromeric mutant receptor to both Glu and IVM, and improved the receptor subunits' cooperativity. We further characterized this heteromeric GluClR mutant as a receptor having a third Glu-binding site at an α/α intersubunit interface. Altogether, our data unveil heteromeric GluClR assemblies having three α and two ß subunits arranged in a counterclockwise ß-α-ß-α-α fashion, as viewed from the extracellular side, with either two or three Glu-binding site interfaces.


Subject(s)
Chloride Channels/metabolism , Animals , Binding Sites , CHO Cells , Chloride Channels/chemistry , Chloride Channels/genetics , Cricetinae , Cricetulus , Mutation , Patch-Clamp Techniques
8.
J Biol Chem ; 286(51): 43830-43841, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-21987577

ABSTRACT

Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that bind neurotransmitters to open an intrinsic transmembrane ion channel pore. The recent crystal structure of a prokaryotic pLGIC from the cyanobacterium Gloeobacter violaceus (GLIC) revealed that it naturally lacks an N-terminal extracellular α helix and an intracellular domain that are typical of eukaryotic pLGICs. GLIC does not respond to neurotransmitters acting at eukaryotic pLGICs but is activated by protons. To determine whether the structural differences account for functional differences, we used a eukaryotic chimeric acetylcholine-glutamate pLGIC that was modified to carry deletions corresponding to the sequences missing in the prokaryotic homolog GLIC. Deletions made in the N-terminal extracellular α helix did not prevent the expression of receptor subunits and the appearance of receptor assemblies on the cell surface but abolished the capability of the receptor to bind α-bungarotoxin (a competitive antagonist) and to respond to the neurotransmitter. Other truncated chimeric receptors that lacked the intracellular domain did bind ligands; displayed robust acetylcholine-elicited responses; and shared with the full-length chimeric receptor similar anionic selectivity, effective open pore diameter, and unitary conductance. We suggest that the integrity of the N-terminal α helix is crucial for ligand accommodation because it stabilizes the intersubunit interfaces adjacent to the neurotransmitter-binding pocket(s). We also conclude that the intracellular domain of the chimeric acetylcholine-glutamate receptor does not modulate the ion channel conductance and is not involved in positioning of the pore-lining helices in the conformation necessary for coordinating a Cl- ion within the intracellular vestibule of the ion channel pore.


Subject(s)
Chlorine/chemistry , Cysteine/chemistry , Acetylcholine/chemistry , Amino Acid Sequence , Bungarotoxins/chemistry , Electrophysiology , Humans , Ions/chemistry , Ligands , Microscopy, Confocal/methods , Molecular Sequence Data , Neurotransmitter Agents/chemistry , Protein Structure, Tertiary , Protons , Receptors, Glutamate/chemistry , Receptors, Nicotinic/chemistry
9.
J Biol Chem ; 285(34): 26519-31, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20466725

ABSTRACT

Eukaryotic pentameric ligand-gated ion channels (pLGICs) are receptors activated by neurotransmitters to rapidly transport ions across cell membranes, down their electrochemical gradients. Recent crystal structures of two prokaryotic pLGICs were interpreted to imply that the extracellular side of the transmembrane pore constricts to close the channel (Hilf, R. J., and Dutzler, R. (2009) Nature 457, 115-118; Bocquet, N., Nury, H., Baaden, M., Le Poupon, C., Changeux, J. P., Delarue, M., and Corringer, P. J. (2009) Nature 457, 111-114). Here, we utilized a eukaryotic acetylcholine (ACh)-serotonin chimeric pLGIC that was engineered with histidines to coordinate a metal ion within the channel pore, at its cytoplasmic side. In a previous study, the access of Zn(2+) ions to the engineered histidines had been explored when the channel was either at rest (closed) or active (open) (Paas, Y., Gibor, G., Grailhe, R., Savatier-Duclert, N., Dufresne, V., Sunesen, M., de Carvalho, L. P., Changeux, J. P., and Attali, B. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 15877-15882). In this study, the interactions of Zn(2+) with the pore were probed upon agonist (ACh) dissociation that triggers the transition of the receptor from the active conformation to the resting conformation (i.e. during deactivation). Application of Zn(2+) onto ACh-bound open receptors obstructed their pore and prevented ionic flow. Removing ACh from its extracellular binding sites to trigger deactivation while Zn(2+) is still bound led to tight trapping of Zn(2+) within the pore. Together with single-channel recordings, made to explore single pore-blocking events, we show that dissociation of ACh causes the gate to shut on a Zn(2+) ion that effectively acts as a "foot in the door." We infer that, upon deactivation, the cytoplasmic side of the pore of the ACh-serotonin receptor chimera constricts to close the channel.


Subject(s)
Acetylcholine/pharmacology , Ion Channel Gating/drug effects , Serotonin/pharmacology , Zinc/chemistry , Cell Line , Humans , Ion Channels/chemistry , Protein Conformation/drug effects , Protein Engineering
10.
PLoS One ; 4(8): e6586, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19675672

ABSTRACT

KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a approximately 2-fold reduction in macroscopic conductance and approximately 2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A's impact in a firing-neuron model, suggest that syntaxin 1A's interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation.


Subject(s)
KCNQ2 Potassium Channel/metabolism , Syntaxin 1/metabolism , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Hippocampus/cytology , Hippocampus/metabolism , Immunohistochemistry , Oocytes/metabolism , Presynaptic Terminals , Protein Binding , Xenopus laevis
11.
PLoS One ; 2(12): e1332, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18159230

ABSTRACT

Cyclooxygenase (COX) enzymes are molecular targets of nonsteroidal anti-inflammatory drugs (NSAIDs), the most used medication worldwide. However, the COX enzymes are not the sole molecular targets of NSAIDs. Recently, we showed that two NSAIDs, diclofenac and meclofenamate, also act as openers of Kv7.2/3 K(+) channels underlying the neuronal M-current. Here we designed new derivatives of diphenylamine carboxylate to dissociate the M-channel opener property from COX inhibition. The carboxylate moiety was derivatized into amides or esters and linked to various alkyl and ether chains. Powerful M-channel openers were generated, provided that the diphenylamine moiety and a terminal hydroxyl group are preserved. In transfected CHO cells, they activated recombinant Kv7.2/3 K(+) channels, causing a hyperpolarizing shift of current activation as measured by whole-cell patch-clamp recording. In sensory dorsal root ganglion and hippocampal neurons, the openers hyperpolarized the membrane potential and robustly depressed evoked spike discharges. They also decreased hippocampal glutamate and GABA release by reducing the frequency of spontaneous excitatory and inhibitory post-synaptic currents. In vivo, the openers exhibited anti-convulsant activity, as measured in mice by the maximal electroshock seizure model. Conversion of the carboxylate function into amide abolished COX inhibition but preserved M-channel modulation. Remarkably, the very same template let us generating potent M-channel blockers. Our results reveal a new and crucial determinant of NSAID-mediated COX inhibition. They also provide a structural framework for designing novel M-channel modulators, including openers and blockers.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Diphenylamine/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Diclofenac/pharmacology , Meclofenamic Acid/pharmacology , Mice , Potassium Channels/drug effects
12.
J Neurophysiol ; 97(1): 283-95, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17050829

ABSTRACT

The M-type K(+) current (M-current), encoded by Kv7.2/3 (KCNQ2/3) K(+) channels, plays a critical role in regulating neuronal excitability because it counteracts subthreshold depolarizations. Here we have characterized the functions of pre- and postsynaptic M-channels using a novel Kv7.2/3 channel opener, NH6, which we synthesized as a new derivative of N-phenylanthranilic acid. NH6 exhibits a good selectivity as it does not affect Kv7.1 and I(KS) K(+) currents as well as NR1/NR2B, AMPA, and GABA(A) receptor-mediated currents. Superfusion of NH6 increased recombinant Kv7.2/3 current amplitude (EC(50) = 18 muM) by causing a hyperpolarizing shift of the voltage activation curve and by markedly slowing the deactivation kinetics. Activation of native M-currents by NH6 robustly reduced the number of evoked and spontaneous action potentials in cultured cortical, hippocampal and dorsal root ganglion neurons. In hippocampal slices, NH6 decreased somatically evoked spike after depolarization of CA1 pyramidal neurons and induced regular firing in bursting neurons. Activation of M-channels by NH6, potently reduced the frequency of spontaneous excitatory and inhibitory postsynaptic currents. Activation of M-channels also decreased the frequency of miniature excitatory (mEPSC) and inhibitory (mIPSC) postsynaptic currents without affecting their amplitude and waveform, thus suggesting that M-channels presynaptically inhibit glutamate and GABA release. Our results suggest a role of presynaptic M-channels in the release of glutamate and GABA. They also indicate that M-channels act pre- and postsynaptically to dampen neuronal excitability.


Subject(s)
KCNQ2 Potassium Channel/metabolism , Nervous System/metabolism , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Synaptic Membranes/metabolism , Synaptic Transmission/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Animals, Newborn , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Ionophores/chemical synthesis , Ionophores/pharmacology , KCNQ2 Potassium Channel/agonists , Mice , Mice, Inbred ICR , Molecular Structure , Nervous System/cytology , Nervous System/drug effects , Organ Culture Techniques , Presynaptic Terminals/drug effects , Rats , Rats, Sprague-Dawley , Synaptic Membranes/drug effects , Synaptic Transmission/drug effects , ortho-Aminobenzoates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL