Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 131(17): 6114-23, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19354244

ABSTRACT

The oxidation of guanine to 5-carboxamido-5-formamido-2-iminohydantoin (2-Ih) is shown to be a major transformation in the oxidation of the single-stranded DNA 5-mer d(TTGTT) by m-chloroperbenzoic acid (m-CPBA) and dimethyldioxirane (DMDO) as a model for peracid oxidants and in the oxidation of the 5-base pair duplex d[(TTGTT).(AACAA)] with DMDO. 2-Ih has not been reported as an oxidative lesion at the level of single/double-stranded DNA or at the nucleoside/nucleotide level. The lesion is stable to DNA digestion and chromatographic purification, suggesting that 2-Ih may be a stable biomarker in vivo. The oxidation products have been structurally characterized and the reaction mechanism has been probed by oxidation of the monomeric species dGuo, dGMP, and dGTP. DMDO selectively oxidizes the guanine moiety of dGuo, dGMP, and dGTP to 2-Ih, and both peracetic and m-chloroperbenzoic acids exhibit the same selectivity. The presence of the glycosidic bond results in the stereoselective induction of an asymmetric center at the spiro carbon to give a mixture of diastereomers, with each diastereomer in equilibrium with a minor conformer through rotation about the formamido C-N bond. Labeling studies with [(18)O(2)]-m-CPBA and H(2)(18)O to determine the source of the added oxygen atoms have established initial epoxidation of the guanine 4-5 bond with pyrimidine ring contraction by an acyl 1,2-migration of guanine carbonyl C6 to form a transient dehydrodeoxyspiroiminodihydantoin followed by hydrolytic ring-opening of the imidazolone ring. Consistent with the proposed mechanism, no 8-oxoguanine was detected as a product of the oxidations of the oligonucleotides or monomeric species mediated by DMDO or the peracids. The 2-Ih base thus appears to be a pathway-specific lesion generated by peracids and possibly other epoxidizing agents and holds promise as a potential biomarker.


Subject(s)
Chlorobenzoates/chemistry , DNA/chemistry , Epoxy Compounds/chemistry , Hydantoins/chemistry , Oxidants/chemistry , Guanine/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Time Factors
2.
Chem Res Toxicol ; 19(4): 506-10, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16608161

ABSTRACT

The nucleobase guanine was oxidized with dimethyldioxirane (DMDO) to explore the role of epoxidizing agents in oxidative DNA damage. Treatment of guanine with 10% molar excess DMDO in aqueous solution at 0 degrees C and pH 7.5 followed by workup under mild conditions gave 5-carboxamido-5-formamido-2-iminohydantoin (1) as the sole isolable product in 71% yield. The structure of 1 was established on the basis of mass spectrometry and NMR studies on 1 and its isotopomers generated by the oxidation of [4-(13)C] and [7-(15)N]guanine, which yield [5-(13)C]1 and [7-(15)N]1. The distribution of 13C and 15N labels in the isotopomeric products supports initial epoxidation of the C4-C5 bond of guanine followed by a 1,2-acyl migration of guanine C6. Compound 1 is suggested as a possible primary DNA lesion from putative epoxidizing agents, including hydroperoxides present during biological processes such as lipid peroxidation.


Subject(s)
Guanine/chemistry , Imines/chemistry , Spiro Compounds/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...