Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(5)2023 May 02.
Article in English | MEDLINE | ID: mdl-37242637

ABSTRACT

The poor bioavailability of an active pharmaceutical ingredient (API) can be enhanced by dissolving it in a polymeric matrix. This formulation strategy is commonly known as amorphous solid dispersion (ASD). API crystallization and/or amorphous phase separation can be detrimental to the bioavailability. Our previous work (Pharmaceutics 2022, 14(9), 1904) provided analysis of the thermodynamics underpinning the collapse of ritonavir (RIT) release from RIT/poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) ASDs due to water-induced amorphous phase separation. This work aimed for the first time to quantify the kinetics of water-induced amorphous phase separation in ASDs and the compositions of the two evolving amorphous phases. Investigations were performed via confocal Raman spectroscopy, and spectra were evaluated using so-called Indirect Hard Modeling. The kinetics of amorphous phase separation were quantified for 20 wt% and 25 wt% drug load (DL) RIT/PVPVA ASDs at 25 °C and 94% relative humidity (RH). The in situ measured compositions of the evolving phases showed excellent agreement with the ternary phase diagram of the RIT/PVPVA/water system predicted by PC-SAFT in our previous study (Pharmaceutics 2022, 14(9), 1904).

2.
Pharmaceutics ; 15(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37242781

ABSTRACT

During the dissolution of amorphous solid dispersion (ASD) formulations, the gel layer that forms at the ASD/water interface strongly dictates the release of the active pharmaceutical ingredient (API) and, hence, the dissolution performance. Several studies have demonstrated that the switch of the gel layer from eroding to non-eroding behavior is API-specific and drug-load (DL)-dependent. This study systematically classifies the ASD release mechanisms and relates them to the phenomenon of the loss of release (LoR). The latter is thermodynamically explained and predicted via a modeled ternary phase diagram of API, polymer, and water, and is then used to describe the ASD/water interfacial layers (below and above the glass transition). To this end, the ternary phase behavior of the APIs, naproxen, and venetoclax with the polymer poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and water was modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The glass transition was modeled using the Gordon-Taylor equation. The DL-dependent LoR was found to be caused by API crystallization or liquid-liquid phase separation (LLPS) at the ASD/water interface. If crystallization occurs, it was found that API and polymer release was impeded above a threshold DL at which the APIs crystallized directly at the ASD interface. If LLPS occurs, an API-rich phase and a polymer-rich phase are formed. Above a threshold DL, the less mobile and hydrophobic API-rich phase accumulates at the interface which prevents API release. LLPS is further influenced by the composition and glass transition temperature of the evolving phases and was investigated at 37 °C and 50 °C regarding impact of temperature of. The modeling results and LoR predictions were experimentally validated by means of dissolution experiments, microscopy, Raman spectroscopy, and size exclusion chromatography. The experimental results were found to be in very good agreement with the predicted release mechanisms deduced from the phase diagrams. Thus, this thermodynamic modeling approach represents a powerful mechanistic tool that can be applied to classify and quantitatively predict the DL-dependent LoR release mechanism of PVPVA64-based ASDs in water.

3.
Pharmaceutics ; 14(9)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145652

ABSTRACT

In amorphous solid dispersions (ASDs), an active pharmaceutical ingredient (API) is dissolved on a molecular level in a polymeric matrix. The API is expected to be released from the ASD upon dissolution in aqueous media. However, a series of earlier works observed a drastic collapse of the API release for ASDs with high drug loads (DLs) compared to those with low DLs. This work provides a thermodynamic analysis of the release mechanism of ASDs composed of ritonavir (RIT) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA). The observed release behavior is, for the first time, explained based on the quantitative thermodynamic phase diagram predicted by PC-SAFT. Both liquid-liquid phase separation in the dissolution medium, as well as amorphous phase separation in the ASD, could be linked back to the same thermodynamic origin, whereas they had been understood as different phenomena so far in the literature. Furthermore, it is illustrated that upon release, independent of DL, both phenomena occur simultaneously for the investigated system. It could be shown that the non-congruent release of the drug and polymer is observed when amorphous phase separation within the ASD has taken place to some degree prior to dissolution. Nanodroplet formation in the dissolution medium could be explained as the liquid-liquid phase separation, as predicted by PC-SAFT.

4.
J Pharm Sci ; 111(11): 2943-2954, 2022 11.
Article in English | MEDLINE | ID: mdl-35973604

ABSTRACT

Titanium dioxide (in the form of E171) is a ubiquitous excipient in tablets and capsules for oral use. In the coating of a tablet or in the shell of a capsule the material disperses visible and UV light so that the contents are protected from the effects of light, and the patient or caregiver cannot see the contents within. It facilitates elegant methods of identification for oral solid dosage forms, thus aiding in the battle against counterfeit products. Titanium dioxide ensures homogeneity of appearance from batch to batch fostering patient confidence. The ability of commercial titanium dioxide to disperse light is a function of the natural properties of the anatase polymorph of titanium dioxide, and the manufacturing processes used to produce the material utilized in pharmaceuticals. In some jurisdictions E171 is being considered for removal from pharmaceutical products, as a consequence of it being delisted as an approved colorant for foods. At the time of writing, in the view of the authors, no system or material which could address both current and future toxicological concerns of Regulators and the functional needs of the pharmaceutical industry and patients has been identified. This takes into account the assessment of materials such as calcium carbonate, talc, isomalt, starch and calcium phosphates. In this paper an IQ Consortium team outlines the properties of titanium dioxide and criteria to which new replacement materials should be held.


Subject(s)
Excipients , Talc , Calcium Carbonate , Food Additives/chemistry , Humans , Starch , Tablets , Titanium/chemistry
5.
Pharmaceutics ; 14(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35631630

ABSTRACT

Several literature publications have described the potential application of active pharmaceutical ingredient (API)-polymer phase diagrams to identify appropriate temperature ranges for processing amorphous solid dispersion (ASD) formulations via the hot-melt extrusion (HME) technique. However, systematic investigations and reliable applications of the phase diagram as a risk assessment tool for HME are non-existent. Accordingly, within AbbVie, an HME risk classification system (HCS) based on API-polymer phase diagrams has been developed as a material-sparing tool for the early risk assessment of especially high melting temperature APIs, which are typically considered unsuitable for HME. The essence of the HCS is to provide an API risk categorization framework for the development of ASDs via the HME process. The proposed classification system is based on the recognition that the manufacture of crystal-free ASD using the HME process fundamentally depends on the ability of the melt temperature to reach the API's thermodynamic solubility temperature or above. Furthermore, we explored the API-polymer phase diagram as a simple tool for process design space selection pertaining to API or polymer thermal degradation regions and glass transition temperature-related dissolution kinetics limitations. Application of the HCS was demonstrated via HME experiments with two high melting temperature APIs, sulfamerazine and telmisartan, with the polymers Copovidone and Soluplus. Analysis of the resulting ASDs in terms of the residual crystallinity and degradation showed excellent agreement with the preassigned HCS class. Within AbbVie, the HCS concept has been successfully applied to more than 60 different APIs over the last 8 years as a robust validated risk assessment and quality-by-design (QbD) tool for the development of HME ASDs.

6.
Mol Pharm ; 18(11): 3999-4014, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34570503

ABSTRACT

Amorphous solid dispersions (ASDs) are commonly used to orally deliver small-molecule drugs that are poorly water-soluble. ASDs consist of drug molecules in the amorphous form which are dispersed in a hydrophilic polymer matrix. Producing a high-performance ASD is critical for effective drug delivery and depends on many factors such as solubility of the drug in the matrix and the rate of drug release in aqueous medium (dissolution), which is linked to bioperformance. Often, researchers perform a large number of design iterations to achieve this objective. A detailed molecular-level understanding of the mechanisms behind ASD dissolution behavior would aid in the screening, designing, and optimization of ASD formulations and would minimize the need for testing a wide variety of prototype formulations. Molecular dynamics and related types of simulations, which model the collective behavior of molecules in condensed phase systems, can provide unique insights into these mechanisms. To study the effectiveness of these simulation techniques in ASD formulation dissolution, we carried out dissipative particle dynamics simulations, which are particularly an efficient form of molecular dynamics calculations. We studied two stages of the dissolution process: the early-stage of the dissolution process, which focuses on the dissolution at the ASD/water interface, and the late-stage of the dissolution process, where significant drug release would have occurred and there would be a mixture of drug and polymer molecules in a predominantly aqueous environment. Experimentally, we used Fourier transform infrared spectroscopy to study the interactions between drugs, polymers, and water in the dry and wet states and the chromatographic technique to study the rate of drug and polymer release. Both experiments and simulations provided evidence of polymer microstructures and drug-polymer interactions as important factors for the dissolution behavior of the investigated ASDs, consistent with previous work by Pudlas et al. (Eur. J. Pharm. Sci.2015, 67, 21-31). As experimental and simulation results are consistent and complementary, it is clear that there is significant potential for combined experimental and computational research for a detailed understanding of ASD formulations and, hence, formulation optimization.


Subject(s)
Drug Compounding/methods , Drug Liberation , Excipients/chemistry , Polymers/chemistry , Biological Availability , Chemistry, Pharmaceutical , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Solubility , Spectroscopy, Fourier Transform Infrared
7.
Int J Pharm X ; 3: 100072, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33855291

ABSTRACT

Amorphous solid dispersions (ASDs) are commonly manufactured using spray-drying processes. The product quality can be decisively influenced by the choice of process parameters. Following the quality-by-design approach, the identification of the spray-drying process design space is thus an integral task in drug product development. Aiming a solvent-free and homogeneous ASD, API crystallization and amorphous phase separation needs to be avoided during drying. This publication provides a predictive approach for determining spray-drying process conditions via considering thermodynamic driving forces for solvent drying as well as ASD-specific API/polymer/solvent interactions and glass transitions. The ternary API/polymer/solvent phase behavior was calculated using the Perturbed-Chain Statistical Associating Theory (PC-SAFT) and combined with mass and energy balances to find appropriate spray-drying conditions. A process design space was identified for the ASDs of ritonavir and naproxen with either poly(vinylpyrrolidone) or poly(vinylpyrrolidone-co-vinylacetate) spray dried from the solvents acetone, dichloromethane, or ethanol.

8.
Eur J Pharm Biopharm ; 158: 132-142, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33212185

ABSTRACT

Understanding the long-term stability of amorphous solid dispersions (ASDs) is important for their successful approval for market. ASD stability does not only depend on the interplay between the active pharmaceutical ingredient (API) and the polymer in the final formulation but may already be disadvantageously influenced by process steps during the production (e.g. selection of inappropriate solvent for spray drying). Residual solvent can affect the API solubility in the polymer, molecular mobility (by influencing the glass-transition temperature) and induce liquid-liquid phase separation. Enhanced mobility in the ASD due to residual solvent can promote recrystallization in ASDs. The removal of residual solvent can be expensive, time-consuming, and usually requires secondary drying procedures to fulfil the regulatory requirements. The aim of this work is to predict the API solubility in polymer-solvent mixtures, solvent influence on the glass transition, and the occurrence of liquid-liquid phase separation of solvent-loaded ASDs using the thermodynamic model PC-SAFT and to experimentally validate these predictions. ASDs containing the APIs ritonavir or naproxen and the polymers poly(vinylpyrrolidone), poly (vinylpyrrolidone-co-vinyl acetate), or hydroxypropyl methylcellulose acetate succinate were spray-dried using the solvents acetone, ethanol, and dichloromethane. API solubility, sorption behavior, liquid-liquid phase separation and glass transition in the ternary API/polymer/solvent mixtures were predicted based on the binary phase behavior between API/solvent, API/polymer, and polymer/solvent and successfully validated experimentally using dynamic vapor sorption (DVS), and Raman spectroscopy. Thus, the presented methodology allows for an in-silico selection of appropriate solvent systems for solvent-based ASD preparation based on a limited amount of experimental data for binary systems only.


Subject(s)
Drug Compounding/methods , Models, Chemical , Polymers/chemistry , Solvents/chemistry , Vitrification , Chemistry, Pharmaceutical/methods , Computer Simulation , Drug Stability , Solubility , Spectrum Analysis, Raman , Spray Drying , Transition Temperature
9.
Mol Pharm ; 17(7): 2721-2733, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32463685

ABSTRACT

Understanding and prevention of unwanted changes of a pharmaceutical formulation during the production process is part of the critical requirements for the successful approval of a new drug product. Polymer-based formulations, so-called amorphous solid dispersions (ASDs), are often produced via solvent-based processes. In such processes, active pharmaceutical ingredients (APIs) and polymers are first dissolved in a solvent or solvent mixture, then the solvent is evaporated, for example, via spray drying or rotary evaporation. During the drying step, unwanted liquid-liquid phase separation may occur, leading to polymer-rich and API-rich regions with crystallization potential, and thus, heterogeneities and a two-phasic system in the final ASD. Phase separation in ASDs may impact their bioperformance because of the locally higher degree of API supersaturation. Although it is known that the choice of the solvent plays an important role in the formation of heterogeneities, solvent-impact on ASD drying and eventual product quality is often neglected in the process design. This study aims to investigate for the first time the phase behavior and drying process of API/polymer/solvents systems from a thermodynamic perspective. Unwanted phase changes during the drying process of the ASD containing hydroxypropyl methylcellulose acetate succinate and naproxen prepared from acetone/water or ethanol/water solvent mixtures were predicted using the thermodynamic model PC-SAFT. The predicted phase behavior and drying curves were successfully validated by confocal Raman spectroscopy.


Subject(s)
Chemistry, Pharmaceutical/methods , Desiccation/methods , Drug Compounding/methods , Naproxen/chemistry , Polymers/chemistry , Solvents/chemistry , Acetone/chemistry , Crystallization , Ethanol/chemistry , Methylcellulose/analogs & derivatives , Methylcellulose/chemistry , Models, Chemical , Phase Transition , Solubility , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Thermodynamics , Water/chemistry
10.
Int J Pharm ; 577: 119065, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31988034

ABSTRACT

In the pharmaceutical industry, polymers are used as excipients for formulating poorly water-soluble active pharmaceutical ingredients (APIs) in so-called "amorphous solid dispersions" (ASDs). ASDs can be produced via solvent-based processes, where API and polymer are both dissolved in a solvent, followed by a solvent evaporation step (e.g. spray drying). Aiming at a homogeneous API/polymer formulation, phase separation of the components (API, polymer, solvent) during solvent evaporation must be avoided. The latter is often determined by the phase behavior of polymer/solvent mixtures used for ASD processing. Therefore, this work investigates the polymer-solvent interactions in these mixtures. Suitable polymer/solvent combinations investigated in this work comprise the pharmaceutically relevant polymers poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64), and hydroxyppropyl methylcellulose acetate succinate 126G (HPMCAS) as well as the solvents acetone, dichloromethane (DCM), ethanol, ethyl acetate, methanol, and water. Based on vapor-sorption experiments demixing of solvents and polymers were predicted using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). These were found to be correct for all investigated solvent/polymer mixtures. Acetone, DCM, ethanol, methanol, and water were found to be completely miscible with PVPVA64. DCM, ethanol, methanol, and water were found to be completely miscible with PVP K90, while none of the investigated solvents was appropriate for avoiding immiscibility with HPMCAS. In addition, the impact of temperature, polymer molecular weight, and solvent-mixture composition on miscibility was successfully predicted using PC-SAFT. Thus, the proposed methodology allows identifying suitable solvents or solvent mixtures relevant for solvent-based preparations of pharmaceutical ASD formulations with low experimental effort.


Subject(s)
Chemistry, Pharmaceutical , Excipients/chemistry , Polymers/chemistry , Solvents/chemistry , Methylcellulose/analogs & derivatives , Methylcellulose/chemistry , Molecular Weight , Phase Transition , Povidone/chemistry , Pyrrolidines/chemistry , Temperature , Vinyl Compounds/chemistry
11.
AAPS PharmSciTech ; 19(4): 1592-1605, 2018 May.
Article in English | MEDLINE | ID: mdl-29488197

ABSTRACT

The aim of this work was to investigate the use of torasemide as a highly sensitive indicator substance and to develop a formulation thereof for establishing quantitative relationships between hot-melt extrusion process conditions and critical quality attributes (CQAs). Using solid-state characterization techniques and a 10 mm lab-scale co-rotating twin-screw extruder, we studied torasemide in a Soluplus® (SOL)-polyethylene glycol 1500 (PEG 1500) matrix, and developed and characterized a formulation which was used as a process indicator to study thermal- and hydrolysis-induced degradation, as well as residual crystallinity. We found that torasemide first dissolved into the matrix and then degraded. Based on this mechanism, extrudates with measurable levels of degradation and residual crystallinity were produced, depending strongly on the main barrel and die temperature and residence time applied. In addition, we found that 10% w/w PEG 1500 as plasticizer resulted in the widest operating space with the widest range of measurable residual crystallinity and degradant levels. Torasemide as an indicator substance behaves like a challenging-to-process API, only with higher sensitivity and more pronounced effects, e.g., degradation and residual crystallinity. Application of a model formulation containing torasemide will enhance the understanding of the dynamic environment inside an extruder and elucidate the cumulative thermal and hydrolysis effects of the extrusion process. The use of such a formulation will also facilitate rational process development and scaling by establishing clear links between process conditions and CQAs.


Subject(s)
Antihypertensive Agents/pharmacokinetics , Chemistry, Pharmaceutical/methods , Hot Temperature , Sulfonamides/chemistry , Antihypertensive Agents/chemistry , Polymers , Sulfonamides/pharmacokinetics , Torsemide , X-Ray Diffraction/methods
12.
Pharm Res ; 35(1): 25, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29305717

ABSTRACT

PURPOSE: The oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) can be improved by the preparation of amorphous solid dispersions (ASDs) where the API is dissolved in polymeric excipients. Desired properties of such ASDs like storage stability, dissolution behavior, and processability can be optimized by additional excipients. In this work, the influence of so-called low-molecular-weight excipients (LMWEs) on the phase behavior of ASDs was investigated. METHOD: Binary ASDs of an amorphous API, naproxen (NAP) or acetaminophen (APAP), embedded in poly-(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) were chosen as reference systems. Polyethylene glycol 1500 (PEG1500), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS1000), propylene glycol monocaprylate type II (Capryol™ 90), and propylene glycol monolaurate type I (Lauroglycol™ FCC) were used as LMWEs. The API solubility in the excipients and the glass-transition temperature of the ASDs were modeled using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Kwei equation, respectively, and compared to corresponding experimental data. RESULTS: The API solubility curves in ternary systems with 90/10 wt%/wt% PVPVA64/LMWE ratios were very close to those in pure PVPVA64. However, the glass-transition temperatures of API/PVPVA64/LMWE ASDs were much lower than those of API/PVPVA64 ASDs. These effects were determined experimentally and agreed with the predictions using the PC-SAFT and Kwei models. CONCLUSION: The impact of the LMWEs on the thermodynamic stability of the ASDs is quite small while the kinetic stability is significantly decreased even by small LMWE amounts. PC-SAFT and the Kwei equation are suitable tools for predicting the influence of LMWEs on the ASD phase behavior.


Subject(s)
Excipients/chemistry , Models, Molecular , Phase Transition , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Acetaminophen/chemistry , Administration, Oral , Chemistry, Pharmaceutical/methods , Humans , Molecular Weight , Naproxen/chemistry , Polyethylene Glycols/chemistry , Solubility , Thermodynamics , Transition Temperature , alpha-Tocopherol/chemistry
13.
Eur J Pharm Biopharm ; 124: 147-157, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29269154

ABSTRACT

The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs.


Subject(s)
Acetaminophen/chemistry , Excipients/chemistry , Naproxen/chemistry , Polymers/chemistry , Dosage Forms , Drug Compounding , Drug Stability , Drug Storage , Humidity , Methylcellulose/analogs & derivatives , Methylcellulose/chemistry , Models, Chemical , Models, Statistical , Phase Transition , Povidone/chemistry , Pyrrolidines/chemistry , Technology, Pharmaceutical/methods , Thermodynamics , Time Factors , Transition Temperature , Vinyl Compounds/chemistry
14.
Mol Pharm ; 14(12): 4374-4386, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29050468

ABSTRACT

The purpose of this work is to compare the long-term physical stability of amorphous solid dispersion (ASD) formulations based on three different commercially used excipients, namely, poly(vinylpyrrolidone) K25 (PVP), poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64), and hydroxypropyl methylcellulose acetate succinate 126G (HPMCAS), at standardized ICH storage conditions, 25 °C/0% relative humidity (RH), 25 °C/60% RH, and 40 °C/75% RH. Acetaminophen (APAP) and naproxen (NAP) were used as active pharmaceutical ingredients (APIs). 18 month long stability studies of these formulations were analyzed and compared with the API/polymer phase diagrams, which were modeled and predicted by applying the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Gordon-Taylor or Kwei equation. The study showed that, at dry storage, the solubility of the APIs in the polymers and the kinetic stabilizing ability of the polymers increase in the following order: HPMCAS < PVPVA64 < PVP. RH significantly reduces the kinetic stabilization as well as NAP solubility in the polymers, while the impact on APAP solubility is small. The impact of RH on the stability increases with increasing hydrophilicity of the pure polymers (HPMCAS < PVPVA64 < PVP). The experimental stability results were in very good agreement with predictions confirming that PC-SAFT and the Kwei equation are suitable predictive tools for determining appropriate ASD compositions and storage conditions to ensure long-term physical stability.


Subject(s)
Drug Carriers/chemistry , Drug Compounding , Excipients/chemistry , Acetaminophen/administration & dosage , Acetaminophen/chemistry , Chemistry, Pharmaceutical , Crystallization , Drug Stability , Humidity , Kinetics , Methylcellulose/analogs & derivatives , Methylcellulose/chemistry , Models, Chemical , Naproxen/administration & dosage , Naproxen/chemistry , Povidone/chemistry , Pyrrolidines/chemistry , Solubility , Thermodynamics , Vinyl Compounds/chemistry
15.
Mol Pharm ; 14(1): 157-171, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28043133

ABSTRACT

The preparation of amorphous solid dispersion (ASD) formulations is a promising strategy to improve the bioavailability of an active pharmaceutical ingredient (API). By dissolving the API in a polymer it is stabilized in its amorphous form, which usually shows higher water solubility than its crystalline counterpart. To prevent recrystallization, the long-term physical stability of ASD formulations is of big interest. In this work, the solubility of the APIs acetaminophen and naproxen in the excipient polymers poly(vinylpyrrolidone) (PVP K25) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) was calculated with three models: the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), the Flory-Huggins model (FH), and an empirical model (Kyeremateng et al., J. Pharm. Sci, 2014, 103, 2847-2858). PC-SAFT and FH were further used to predict the influence of relative humidity (RH) on the API solubility in the polymers. The Gordon-Taylor equation was applied to model the glass-transition temperature of dry ASD and at humid conditions. The calculations were validated by 18 months-long stability studies at standardized storage conditions, 25 °C/0% RH, 25 °C/60% RH, and 40 °C/75% RH. The results of the three modeling approaches for the API solubility in polymers agreed with the experimental solubility data, which are only accessible at high temperatures in dry polymers. However, at room temperature FH resulted in a lower solubility of the APIs in the dry polymers than PC-SAFT and the empirical model. The impact of RH on the solubility of acetaminophen was predicted to be small, but naproxen solubility in the polymers was predicted to decrease with increasing RH with both, PC-SAFT and FH. At 25 °C/60% RH and 40 °C/75% RH, PC-SAFT is in agreement with all results of the long-term stability studies, while FH underestimates the acetaminophen solubility in PVP K25 and PVPVA64.


Subject(s)
Polyvinyls/chemistry , Povidone/analogs & derivatives , Pyrrolidines/chemistry , Acetaminophen/chemistry , Biological Availability , Chemistry, Pharmaceutical/methods , Drug Stability , Excipients/chemistry , Naproxen/chemistry , Povidone/chemistry , Solubility , Thermodynamics , Transition Temperature
16.
J Pharm Biomed Anal ; 51(3): 557-64, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19801176

ABSTRACT

Analytical instrument qualification (AIQ) is a prerequisite for any analytical method validation and thus must be considered as a vital basis of analytical data integrity and quality in pharmaceutical analysis. There is a well-established system of qualification phases-Design Qualification, Installation Qualification (IQ), Operational Qualification (OQ) and Performance Qualification (PQ). As HPLC systems are "off the shelf" equipment, Design Qualification may be disregarded here. IQ establishes that the instrument is received as designed and that it is properly installed. OQ is carried out modularly with the intention to ensure that the specific modules of the system and the whole system are operating according to the defined specifications. PQ as the last step of the initial qualification is supposed to ensure continued satisfactory performance of an instrument under actual running conditions over the anticipated working range during daily use. However, PQ is not a one time exercise, but is currently repeated regularly independently from routine use of the analytical system using standard reference test condition. But this approach, which is time consuming and expensive only provides a snapshot of system performance. As HPLC procedures generally require a system suitability test (SST) prior and/or after test, it might be far more reasonable and robust to use these SST data for a continuous PQ. The work presented here demonstrates that, under certain circumstances, satisfactory instrument performance assessment can be derived from system suitability tests and performance data from daily use as well. A generally accepted qualification list, consisting of only twelve critical parameters, was compiled in a first step. Some parameters such as injector or thermostatting accuracy were considered redundant while others were successfully incorporated in the proposed holistic approach. System suitability test data as well as OQ/PQ data were provided from different sources and evaluated. The promising results confirmed our concept of ongoing/continuous PQ as a major improvement in AIQ. This approach will not only help to reduce time and effort in the daily laboratory routine without losing data quality, but also avoid the critical re-evaluation of numerous analytical tests once a routine PQ fails.


Subject(s)
Chemistry, Pharmaceutical/economics , Chemistry, Pharmaceutical/standards , Evaluation Studies as Topic , Chromatography, High Pressure Liquid/economics , Chromatography, High Pressure Liquid/standards , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...