Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2198, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069164

ABSTRACT

While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.


Subject(s)
Basolateral Nuclear Complex , Chronic Pain , Semaphorins , Mice , Male , Humans , Animals , Depression/genetics , Gyrus Cinguli/metabolism , Basolateral Nuclear Complex/metabolism , Comorbidity , Semaphorins/metabolism
2.
Biol Psychiatry ; 91(12): 1039-1050, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35654559

ABSTRACT

BACKGROUND: Alcohol acts as an addictive substance that may lead to alcohol use disorder. In humans, magnetic resonance imaging showed diverse structural and functional brain alterations associated with this complex pathology. Single magnetic resonance imaging modalities are used mostly but are insufficient to portray and understand the broad neuroadaptations to alcohol. Here, we combined structural and functional magnetic resonance imaging and connectome mapping in mice to establish brain-wide fingerprints of alcohol effects with translatable potential. METHODS: Mice underwent a chronic intermittent alcohol drinking protocol for 6 weeks before being imaged under medetomidine anesthesia. We performed open-ended multivariate analysis of structural data and functional connectivity mapping on the same subjects. RESULTS: Structural analysis showed alcohol effects for the prefrontal cortex/anterior insula, hippocampus, and somatosensory cortex. Integration with microglia histology revealed distinct alcohol signatures, suggestive of advanced (prefrontal cortex/anterior insula, somatosensory cortex) and early (hippocampus) inflammation. Functional analysis showed major alterations of insula, ventral tegmental area, and retrosplenial cortex connectivity, impacting communication patterns for salience (insula), reward (ventral tegmental area), and default mode (retrosplenial cortex) networks. The insula appeared as a most sensitive brain center across structural and functional analyses. CONCLUSIONS: This study demonstrates alcohol effects in mice, which possibly underlie lower top-down control and impaired hedonic balance documented at the behavioral level, and aligns with neuroimaging findings in humans despite the potential limitation induced by medetomidine sedation. This study paves the way to identify further biomarkers and to probe neurobiological mechanisms of alcohol effects using genetic and pharmacological manipulations in mouse models of alcohol drinking and dependence.


Subject(s)
Alcoholism , Connectome , Alcoholism/diagnostic imaging , Animals , Brain , Ethanol , Humans , Magnetic Resonance Imaging/methods , Medetomidine/pharmacology , Mice
3.
Eur J Neurosci ; 55(2): 611-623, 2022 01.
Article in English | MEDLINE | ID: mdl-34888964

ABSTRACT

Dementia with Lewy bodies (DLB) patients show few significant macroscopic structural changes, especially at the early stages of the disease, making quantitative MRI especially interesting to explore more subtle changes that are not detectable by conventional volumetric techniques. Microstructural alterations have been reported in DLB at the dementia stage, but no study to date was conducted in prodromal patients. Here, quantitative MRI data were collected from 46 DLB prodromal patients and 20 healthy elderly subjects, who also underwent a detailed clinical examination including the Mayo Clinic Fluctuation Scale. We conducted voxel-wise between-group comparisons in diffusion tensor imaging (DTI) metrics and in R2* mapping, along with a multivariate analysis combining the two modalities. We highlighted multiple grey matter and white matter microstructural changes in DLB patients at the prodromal stage, compared to control subjects. Our multivariate analysis identified three distinct regional patterns of DTI and R2* changes (anterior, anteromedial, posterior) in DLB patients, that could reflect different neuropathological processes across brain regions. We also observed an association between R2* alterations in the thalamus, and the severity of fluctuations, in the DLB group. These preliminary findings are promising and require future investigations to better understand the biological underpinnings of microstructural alterations.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Aged , Aging , Alzheimer Disease/pathology , Diffusion Tensor Imaging/methods , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Magnetic Resonance Imaging/methods
4.
Brain ; 143(12): 3748-3762, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33184651

ABSTRACT

In Alzheimer's disease, the tauopathy is known as a major mechanism responsible for the development of cognitive deficits. Early biomarkers of such affectations for diagnosis/stratification are crucial in Alzheimer's disease research, and brain connectome studies increasingly show their potential establishing pathology fingerprints at the network level. In this context, we conducted an in vivo multimodal MRI study on young Thy-Tau22 transgenic mice expressing tauopathy, performing resting state functional MRI and structural brain imaging to identify early connectome signatures of the pathology, relating with histological and behavioural investigations. In the prodromal phase of tauopathy, before the emergence of cognitive impairments, Thy-Tau22 mice displayed selective modifications of brain functional connectivity involving three main centres: hippocampus (HIP), amygdala (AMG) and the isocortical areas, notably the somatosensory (SS) cortex. Each of these regions showed differential histopathological profiles. Disrupted ventral HIP-AMG functional pathway and altered dynamic functional connectivity were consistent with high pathological tau deposition and astrogliosis in both hippocampus and amygdala, and significant microglial reactivity in amygdalar nuclei. These patterns were concurrent with widespread functional hyperconnectivity of memory-related circuits of dorsal hippocampus-encompassing dorsal HIP-SS communication-in the absence of significant cortical histopathological markers. These findings suggest the coexistence of two intermingled mechanisms of response at the functional connectome level in the early phases of pathology: a maladaptive and a likely compensatory response. Captured in the connectivity patterns, such first responses to pathology could further be used in translational investigations as a lead towards an early biomarker of tauopathy as well as new targets for future treatments.


Subject(s)
Memory Disorders/pathology , Memory Disorders/psychology , Nerve Net/pathology , Tauopathies/pathology , Tauopathies/psychology , Animals , Astrocytes/pathology , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/psychology , Connectome , Disease Progression , Gliosis/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Memory Disorders/etiology , Mice , Mice, Transgenic , Nerve Net/diagnostic imaging , Tauopathies/complications , Tauopathies/diagnostic imaging , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...