Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Pest Manag Sci ; 78(12): 5049-5056, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36317936

ABSTRACT

The present agrochemical safety evaluation paradigm is long-standing and anchored in well-established testing and evaluation procedures. However, it does not meet the present-day challenges of rapidly growing populations, food insecurity, and pressures from climate change. To transform the current framework and apply modern evaluation strategies that better support sustainable agriculture, the Health and Environmental Sciences Institute (HESI) assembled a technical committee to reframe the safety evaluation of crop-protection products. The committee is composed of international experts from regulatory agencies, academia, industry and nongovernmental organizations. Their mission is to establish a framework that supports the development of fit-for-purpose agrochemical safety evaluation that is applicable to changing global, as well as local needs and regulatory decisions, and incorporates relevant evolving science. This will be accomplished through the integration of state-of-the-art scientific methods, technologies and data sources, to inform safety and risk decisions, and adapt them to evolving local and global needs. The project team will use a systems-thinking approach to develop the tools that will implement a problem formulation and exposure driven approach to create sustainable, safe and effective crop protection products, and reduce, replace and refine animal studies with fit-for-purpose assays. A new approach necessarily will integrate the most modern tools and latest advances in chemical testing methods to guarantee the robust human and environmental safety and risk assessment of agrochemicals. This article summarizes the challenges associated with the modernization of agrochemical safety evaluation, proposes a potential roadmap, and seeks input and engagement from the broader community to advance this effort. © 2022 Health and Environmental Sciences Institute (HESI). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Agrochemicals , Crop Protection , Humans , Animals , Risk Assessment/methods , Agriculture , Pest Control
2.
Environ Toxicol Chem ; 41(11): 2649-2657, 2022 11.
Article in English | MEDLINE | ID: mdl-35959883

ABSTRACT

Substances of unknown or variable composition, complex reaction products, and biological materials (UVCBs) pose a unique challenge to regulators and to product registrants, who are required to characterize their fate, exposure, hazard, and potential risks to human health and the environment. To address these challenges and ensure an efficient and fit-for-purpose process, it is proposed that the ecological risks of UVCBs be assessed following a tiered strategy. The development of this approach required exploring how substance composition ties into hazard and exposure information and determining the extent to which a UVCB needs to be characterized to ensure a robust risk assessment. The present study highlights the key aspects of this new method. It presents how a tiered substance characterization approach can be integrated into broader UVCB risk-assessment schemes to encourage an examination of data needs before a full substance characterization is performed. The first tier of the characterization process, Tier 0, is a fundamental step that includes data from basic, lower-resolution compositional analyses. Tier 0 assessments can be used to inform hazard and exposure for any substance of interest. The need for more sophisticated, higher-tier characterization is determined by the level of uncertainty of the risk assessment. The next step will integrate a tiered exposure assessment into the characterization scheme featured in the present study, to create a more complete risk-assessment framework. Environ Toxicol Chem 2022;41:2649-2657. © 2022 Her Majesty the Queen in Right of Canada, Health and Environmental Sciences Institute and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Subject(s)
Ecotoxicology , Humans , Risk Assessment/methods , Canada
3.
Glob Epidemiol ; 4: 100084, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37637021

ABSTRACT

Environmental epidemiology has proven critical to study various associations between environmental exposures and adverse human health effects. However, there is a perception that it often does not sufficiently inform quantitative risk assessment. To help address this concern, in 2017, the Health and Environmental Sciences Institute initiated a project engaging the epidemiology, exposure science, and risk assessment communities with tripartite representation from government agencies, industry, and academia, in a dialogue on the use of environmental epidemiology for quantitative risk assessment and public health decision making. As part of this project, four meetings attended by experts in epidemiology, exposure science, toxicology, statistics, and risk assessment, as well as one additional meeting engaging funding agencies, were organized to explore incentives and barriers to realizing the full potential of epidemiological data in quantitative risk assessment. A set of questions was shared with workshop participants prior to the meetings, and two case studies were used to support the discussion. Five key ideas emerged from these meetings as areas of desired improvement to ensure that human data can more consistently become an integral part of quantitative risk assessment: 1) reducing confirmation and publication bias, 2) increasing communication with funding agencies to raise awareness of research needs, 3) developing alternative funding channels targeted to support quantitative risk assessment, 4) making data available for reuse and analysis, and 5) developing cross-disciplinary and cross-sectoral interactions, collaborations, and training. We explored and integrated these themes into a roadmap illustrating the need for a multi-stakeholder effort to ensure that epidemiological data can fully contribute to the quantitative evaluation of human health risks, and to build confidence in a reliable decision-making process that leverages the totality of scientific evidence.

4.
Glob Epidemiol ; 3: 100048, 2021 Nov.
Article in English | MEDLINE | ID: mdl-37635726

ABSTRACT

Throughout history, environmental epidemiology has proven crucial to identify certain threats to human health and to provide a basis for the development of life-saving public health policies. However, epidemiologists are facing challenges when studying tenuous threats such as environmental exposure to chemicals, whose association with adverse health effects may be difficult to characterize. As a result, epidemiological data can seldom be fully leveraged for quantitative risk assessment and decision-making. Despite two decades of efforts to improve a more systematic integration of human data to evaluate human health risks, assessors still heavily rely on animal data to do so, while epidemiology plays more of a secondary role. Although the need for more and better collaboration between risk assessors and epidemiologists is widely recognized, both fields tend to remain siloed. In 2017, the Health and Environmental Sciences Institute initiated a project engaging the epidemiology, exposure science, and regulatory communities with tripartite representation from regulators, industry, and academia in a dialogue on the use of environmental epidemiology for regulatory decision-making. Several focus groups attended by epidemiology, exposure science, and risk assessment experts were organized to explore incentives and barriers to collaboration, to ultimately bridge the gap between the various disciplines, and to realize the full potential of epidemiological data in risk assessment. Various ideas that have emerged from these meetings could help ensure the better integration of epidemiological data in quantitative risk assessment and contribute to building confidence in a robust and science-based regulatory decision-making process.

5.
Environ Toxicol Chem ; 39(11): 2097-2108, 2020 11.
Article in English | MEDLINE | ID: mdl-32780492

ABSTRACT

Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) pose unique risk assessment challenges to regulators and to product registrants. These substances can contain many constituents, sometimes partially unknown and/or variable, depending on fluctuations in their source material and/or manufacturing process. International regulatory agencies have highlighted the difficulties in characterizing UVCBs and assessing their toxicity and environmental fate. Several industrial sectors have attempted to address these issues by developing frameworks and characterization methods. Based on the output of a 2016 workshop, this critical review examines current practices for UVCB risk assessment and reveals a need for a multipronged and transparent approach integrating whole-substance and constituent-based information. In silico tools or empirical measurements can provide information on discrete and/or blocks of UVCB constituents with similar hazard properties. Read-across and/or whole-substance toxicity and fate testing using adapted emerging methods can provide whole-substance information. Continued collaboration of stakeholders representing government, industry, and academia will facilitate the development of practical testing strategies and guidelines for addressing regulatory requirements for UVCBs. Environ Toxicol Chem 2020;39:2097-2108. © 2020 Health and Environmental Sciences Institute. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Ecotoxicology , Environmental Pollutants/toxicity , Risk Assessment , Bioaccumulation , Computer Simulation
6.
MMWR Morb Mortal Wkly Rep ; 64(31): 852-5, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26270061

ABSTRACT

On August 12, 2014, an Anchorage hospital notified the Alaska Section of Epidemiology (SOE) that a middle-aged male resident of Anchorage (patient A) had arrived in the emergency department with possible palytoxin exposure. Patient A complained of a bitter metallic taste, fever, weakness, cough, and muscle pain 7-8 hours after introduction of live zoanthid coral into his home aquarium. Palytoxin, a potent toxin known to produce the reported effects, is contained in zoanthid marine corals.


Subject(s)
Acrylamides/poisoning , Anthozoa/chemistry , Housing, Animal , Inhalation Exposure/adverse effects , Occupational Exposure/adverse effects , Adult , Alaska , Animals , Cnidarian Venoms , Female , Humans , Male , Middle Aged , Young Adult
7.
Sci Total Environ ; 408(24): 6100-7, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20934203

ABSTRACT

Estimating dermal absorption from contaminated soils typically requires extrapolations from measurements obtained on soils artificially contaminated at much larger concentrations. Such extrapolations should be constrained by the fact that maximum absorption will occur for the largest possible concentration of chemical on the soil without neat chemical being present; i.e., at the soil saturation limit (S(soil)). Saturation limits of two low-volatility model compounds (4-cyanophenol and methyl paraben) were determined on the 38-63µm sieve fraction of four soils with different fractions of organic carbon (f(oc)=0.015-0.45) and specific surface areas (σ(soil)=4-34m(2) g(-1)) using two methods: equilibrium uptake into silicone rubber membranes and differential scanning calorimetry. Except for Pahokee peat, which had the largest f(oc), a model assuming contributions from both surface adsorption and organic carbon absorption provided excellent predictions of S(soil). In all soils, the surface saturation concentration of both chemicals was estimated at 2.2mg m(-2). The saturation concentration of 4-cyanophenol in the soil organic carbon was 1.7-fold higher than methyl paraben, which is consistent with the estimated solubility limits of these two chemicals in octanol.


Subject(s)
Parabens/chemistry , Phenols/chemistry , Skin Absorption , Soil Pollutants/chemistry , Volatile Organic Compounds/chemistry , Environmental Exposure/analysis , Parabens/analysis , Phenols/analysis , Risk Assessment , Soil Pollutants/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL