Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 7(1): 4347, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28659626

ABSTRACT

Low-permeability (unconventional) hydrocarbon reservoirs exhibit a complex nanopore structure and micro (µm) -scale variability in composition which control fluid distribution, displacement and transport processes. Conventional methods for characterizing fluid-rock interaction are however typically performed at a macro (mm) -scale on rock sample surfaces. In this work, innovative methods for the quantification of micro-scale variations in wettability and fluid distribution in a low-permeability oil reservoir was enabled by using an environmental scanning electron microscope. Live imaging of controlled water condensation/evaporation experiments allowed micro-droplet contact angles to be evaluated, while imaging combined with x-ray mapping of cryogenically frozen samples facilitated the evaluation of oil and water micro-droplet contact angles after successive fluid injection. For the first time, live imaging of fluids injected through a micro-injection system has enabled quantification of sessile and dynamic micro-droplet contact angles. Application of these combined methods has revealed dramatic spatial changes in fluid contact angles at the micro-scale, calling into question the applicability of macro-scale observations of fluid-rock interaction.

2.
J Digit Imaging ; 20(3): 263-78, 2007 Sep.
Article in English | MEDLINE | ID: mdl-16937021

ABSTRACT

Segmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost always heterogeneous in nature; furthermore, viable tumor, necrosis, and normal tissue are often intermixed. Tumor definition and diagnosis require the analysis of the spatial distribution and Hounsfield unit (HU) values of voxels in computed tomography (CT) images, coupled with a knowledge of normal anatomy. Segmentation and analysis of the tissue composition of the tumor can assist in quantitative assessment of the response to therapy and in the planning of the delayed surgery for resection of the tumor. We propose methods to achieve 3-dimensional segmentation of the neuroblastic tumor. In our scheme, some of the normal structures expected in abdominal CT images are delineated and removed from further consideration; the remaining parts of the image volume are then examined for tumor mass. Mathematical morphology, fuzzy connectivity, and other image processing tools are deployed for this purpose. Expert knowledge provided by a radiologist in the form of the expected structures and their shapes, HU values, and radiological characteristics are incorporated into the segmentation algorithm. In this preliminary study, the methods were tested with 10 CT exams of four cases from the Alberta Children's Hospital. False-negative error rates of less than 12% were obtained in eight of 10 exams; however, seven of the exams had false-positive error rates of more than 20% with respect to manual segmentation of the tumor by a radiologist.


Subject(s)
Brain Neoplasms/diagnostic imaging , Imaging, Three-Dimensional , Neuroblastoma/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed , False Negative Reactions , Female , Fuzzy Logic , Humans , Infant , Male , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL